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The Geometry of Controlled Mechanical Systems

J. Baillieul*
April 13, 1998

Abstract

The control of mechanical systems has become a principal application focus of nonlinear
control theory. This development was to a very large extent foreseen in the early work of
R.W. Brockett, and a number of his papers from the mid 1970’s have been highly influential
in establishing the links between nonlinear control theory and geometric mechanics. Taking
some of Brockett’s early work as a starting point, we study intrinsically second order nonlinear
control systems. The theory is developed using the language of differential geometry and affine
connections. Velocity and acceleration controlled Lagrangian systems provide a rich class of
examples of second order control systems. These arise in modeling the dynamics of super-
articulated mechanical systems, in which only some of the configuration variables (or degrees
of freedom) are directly controlled, with the remaining variables evolving under the dynamic
influence of the actuated degrees of freedom. Our goal is to develop a nonlinear control theory
which characterizes the way in which the unactuated degrees of freedom in these systems are
influenced by the degrees of freedom which can be controlled directly. Central to the theory is a
natural Riemannian structure and certain curvature-like quantities which provide a measure of
the lack of integrability in the mapping of input trajectories to configuration space trajectories.
The report chapter concludes with results connecting the geometry of second order systems with
the theory of averaged Lagrangian and Hamiltonian systems.

1 Introduction

The early years (=for the most part the decade of the 1970’s) in the development of nonlinear geo-
metric control theory witnessed attempts to extend all of what was known about linear systems into
the realm of controlled dynamical systems which could be described by a finite number of ordinary
differential equations with inputs. A number of researchers joined the quest, and a sampling of sem-
inal papers includes Brockett, [1972, 1973], Haynes and Hermes, [1970], Hermes and Haynes, {1963},
Krener, [1974], and Sussmann and Jurdjevic, [1972]. The simple observation that differentiable
manifolds were the natural state space structures for the study of controlled nonlinear differential
equations opened a field of research that would be rich and active for many years.

While the field developed initially with the goal of extending linear state space control theory
into the nonlinear domain, there was the early discovery of features of nonlinear systems for which
no linear analogues exist. Specifically, the geometry of noncommuting vectorfields is a theme which
was central in the earliest expositions of geometric nonlinear control theory, and this theme has
remained central to many major developments over the past quarter century. In addition to laying
down significant parts of the theoretical foundations of modern geometric control theory, Roger
Brockett also did seminal work on important applications of the theory to the study of controlled

*The author is very grateful to Dr. Marc Jacobs of the Air Force Office of Scientific Research for many years of
support of his research on the nonlinear control theory of mechanical systems. Currently this support is extended
through grant number F49620-96-1-0059. Support from the Army Research Office under the ODDR&E MURI97
Program Grant No. DAAG55-97-1-0114 to the Center for Dynamics and Control of Smart Structures (through Harvard
University) is also gratefully acknowledged. Finally, it is a pleasure to thank P.S. Krishnaprasad for his insights on
the matters discussed herein. .



mechanical systems. The 1976 NASA-Ames lectures (Brockett, [1976]) began a school of research
that has now grown too large to survey in the present brief article. It is probably not coincidental
that during the twenty-five year development of geometric nonlinear control theory, the field of
analytical mechanics has itself been developed along increasingly geometric lines. (See, for instance
" Marsden and Ratiu, [1994].)

The starting point for this article is the global definition of a smooth nonlinear control system
which appeared for the first time in Brockett, [1976]. In the next section, we repeat this definition and
discuss its extension and specialization to the case of intrinsically second order systems. While such
systems can be defined and studied in a purely formal way, we shall show that they arise naturally
as Lagrangian models of super-articulated (also referred to as under-actuated) mechanical systems.
In these systems, some of the configuration variables (or degrees of freedom) are directly controlled
while the remaining variables evolve under the dynamic influence of the controlled degrees of freedom.
We shall study such mechanical systems taking the viewpoint that the directly actuated degrees of
freedom are inputs or controls which influence the remaining configuration variables through the
given Lagrangian dynamics. Of course, in Lagrangian models, the velocities and accelerations of the
directly actuated degrees of freedom also play a role in influencing the dynamics of the unactuated
degrees of freedom, and thus it is natural to regard the inputs to these systems as triples comprised
of the actuated configuration variables together with their associated velocities and accelerations.

In Section 3, we shall associate certain curvature-like quantities to our super-articulated La-
grangian control systems. Both configuration flatness and input flatness will be defined, and it will
be shown that input flatness and configuration flatness together are necessary conditions for there to
exist a change of coordinates such that in the new coordinates (i) the inertia tensor is diagonal, and
(ii) no input accelerations enter the equations of motion. (In this case, we may say the systems are
velocity controlled.) It will be noted that the flatness discussed in Section 3 is an intrinsically second
order concept—related to ideas from classical Riemannian geometry. Thus we must distinguish this
from differential flatness which has been introduced by Fliess (e.g. [15], and see also [23]).

In Section 4, we consider the same Lagrangian models of super-articulated mechanical systems
under the influence of oscillatory inputs. For this class of systems, we wish to answer the question of
when high frequency forcing of certain degrees of freedom will cause the total assemblage to respond
with a prescribed stable behavior. A growing body of research on this question has been aimed
at understanding the extent to which this question can be answered by an appropriate theory of
averaging. Section 4 presents recent results on averaging Hamiltonian and Lagrangian systems, and
in particular, we describe the role of the averaged potential in characterizing the qualitative dynamics
of periodically forced mechanical systems. Configuration flatness together with input flatness again
play a role in characterizing necessary conditions for the existence of a coordinate system in terms of
which the averaged potential is obtained directly by simple averaging of the potential energy terms
in the Lagrangian.

2 Second Order Generalized Control Systems

A local description of a nonlinear control system typically involves a differential equation of the form

i=f(g,7), 1)

where f : M xU — TM, with M being an (n-dimensional) state manifold and U an (m-dimensional)
input manifold. Brockett [1976] pointed out that such models do not provide global descriptions of
systems where the available input is state dependent. In the natural global extension of (1), we view
f as a bundle map.

Definition 1 A smooth nonlinear control system is a quadruple (B, M, x, f) such that

(i) (B, M, ) is a fiber bundle with total space B, base space M, and canonical projection 7 : B = M,
and :



(ii) f : B = TM is a bundle morphism such that for each ¢ € M and z € U, = 77 (q),
flg,z) € T,M.

For a complete introduction to the theory of fiber bundles, the reader is referred to Husemoller
[1994] or the classical treatise Steenrod [1951]. Recall that for each g € M, there is a neighborhood
V of ¢ and a diffeomorphism ¢ mapping 7~(V) onto V x 7~!(q). Thus, as Brockett points out
(Brockett, [1976], p. 16), by restricting our attention to such neighborhoods, it is always possible to
find a local representation of a smooth nonlinear control system which is of the form (1).

To study controlled mechanical systems, it will be useful to extend models of the form (1) to
include systems which are second order (in the configuration variables ¢) and in which the controlling
effects of the input variables are primarily due to their accelerations, £(-). The descriptions of motions
in these systems will involve the notion of parallel displacements of vectorfields in T'M along curves
in B. Given a vectorfield X on B and any curve 7(t) € B, the lifting of 7 to a curve X(r(t)) € TB
is projected by the tangent mapping . onto a curve m,(X(7(t))) € TM. This association leads
to the desired notion of covariant differentiation of vectorfields in TM along curves in B, and we

shall prescribe this in terms of local coordinates as follows. Let (gi,...,qn,21,...,Zm) denote local
coordinates defined in a neighborhood of a point p € B. Let
0 .
Xi=51;, (1:1,...,n),
- o .
Xi:azi’ (t=1,...,m)
be the associated vectorfields in T'B. We may also view (qi,...,¢,) as defining local coordinates in
a neighborhood of #(p) € M. Then we similarly let
0 .
Y"=E§’ (t=1,...,n)

be the associated vectorfields in TM. In terms of this local coordinate description, for each X; and
each (g, z) € B, the tangent mapping 7, associates a vector Y;* € Ty M by means of the formula

Yi* (Q7 :lJ) = W*Xi(q) $)
In general, Y;*(q, z) # Yi(g), but we may write

Y (g,z) = Z a;(2)Y;(g), (E=1,...,n).

i=1

By restricting to a smaller neighborhood if necessary, there is no loss of generality in assuming that
the n X n matrix A(z), whose ij-th entry is a;;{z), is nonsingular for each z. For any point ¢ € M,
7~Y(q) € B, each vectorfield X; (i = 1,...,n) and X; (j = 1...,m), defines an integral curve
passing through 7~1(g). For each such integral curve, expressed in our coordinate neighborhood as
7(t) = (g(t), z(t)), there is a corresponding set of curves Y;*(q(t),z(t)) (: = 1...,n) in the tangent
bundle TM. Tangents to these curves define a covariant derivative operator V:TB xTM — TM
which is prescribed in terms of the given local coordinates by means of a total of (n+m)n? functions:
{T%} G,5,k=1,...,n) and {f‘fj}, (i=1,...,m;j,k=1,...,n), and the formulas

Vx. Y= Yk Fijk*, ,i=1,...,m; (2)
v)-{ilfj* = Z;::l fng;, 1= 1, ceeyMy (3)
ji=1,...,n.

Since the vectorfields X; (and X;) lie in the coordinate directions, it is clear what is meant if we
write

n n
Vg Yy = Z I‘i'chk*§ Ve, Yy = fojyk*- (4)
: k=1 k=1



The covariant derivative operator defines a generalized affine connection and allows us to study
displacement of vectorfields in T'M along curves (g(t),z(t)) € B. We refer to Kobayashi and No-
mizu, [19], for a classical treatment of affine connections and parallel displacement. In the present
development, we shall view points g in the base manifold as states of a nonlinear control system (and
eventually as generalized coordinates of a mechanical control system) and the points z in the fiber
as control inputs. We shall be interested in lifting curves in the total space B to curves in T'B and
projecting these liftings onto T'M. It is useful to keep in mind the following commutative diagram

T
7B — TM

| .

B — M

where the vertical arrows are the canonical tangent bundle projections. As above, given a curve
(q(t),z(t)) in B, we lift it to a family of curves X;(g(t),z(t)) in TB (1 < i < n) and define corre-
sponding projections Y;*(g(t), z(t)) = m. Xi(g(t), z(¢t)) in TM. If (g(t),z(t)) (0 <t < tp) remains in
our coordinate neighborhood in B, we have a valid local representation of the corresponding tangent

vector
n

3 ai(t)Xi(a(),z(8)) + Y Bi®)Xi(a(t), 2(2))

=1 i=1

for each t in 0 < ¢ < to. (This is a curve in TB.) The vectorfields Y;*(q,z) = 7. X;(q, z), appearing
in the formulas (2)-(3) thus depend on points in the total space B. In terms of the vectorfields Y}*,
the image curve in TM may be expressed as

n

Y = 3 ai())Y; (glt), o(t)- &)

i=1

This projection defines a vectorfield (in TM) along the curve T(t) = (q(t), z(t)) in B. Differentiating
Y with respect to ¢ and using our covariant derivative operator to project the result back onto T M,
we obtain the covariant derivative in the direction 7, V;Y, for each ¢ in 0 < ¢ < ¢p:

> (autrs + @} Va¥os + 2 Va¥it).

i=1 j=1 j=1

(Cf. Kobayashi and Nomizu, [19] p. 114.) Using the relationships (4), this expression may be rendered

> <c’vk(t) + Y Thoig; + ZZf;?,.a,.zj) Y. (6)

k=1 i,j=1 i=1 j=1

Using the notion of parallel displacement, we can now state conditions under which the curves of the
form (5) are trajectories of a second order generalized control system. The conditions involve the
vanishing of covariant derivatives, and thus these curves are natural generalizations to the input-
dependent case of geodesic flows.

Definition 2 We say that a curve

n

V() =) w(t)Y(g(t),2(2)

i=1



is parallel along 7(t) = (g(t),z(t)) if the covariant derivative in the direction 7, V;V is zero. Equiv-
alently, in terms of local coordinates, V(t) is parallel along 7(t) if

Z(@i(t)yi* + 'Ui(t)(z Vo, Yi]g + Z[vz’y:]ij)) =08

i=1 j=1 j=1

An even more explicit rendering of the condition for Y in (5) to be parallel along 7 is that of:)
is the unique solution to the system of differential equations

n n m
)+ > Thaigj+» ) Thad;j=0 (k=1,...,n)

i,j=1 i=1 j=1

Definition 3 We say that (5) defines a smooth generalized second order control system if (i) c;(t) =
Gi(t) + 3_j= 7ii(9)%;(t) where the y;; are mn smooth functions of ¢, and (ii) the vector field (5) is
parallel along the curve (g(t),z(t)).0

In particular, if (5) is a trajectory of smooth generalized second order control system, the coor-
dinate functions g¢;(t) and z;(t) satisfy

Gk + Z’Yu (9)Z; Z rﬂ(hq] + Z Z I."],qlzj =0, fori=1,. (7)

i,j=1 i=1 j=1

where I‘" = I"“ + a—“l This is a direct extension of the geometric characterization of second-order
dlfferentlal equat1ons found in Abraham and Marsden, 1988, [1]. We employ the word generalized to
indicate that derivatives of the input curves z(-) influence the dynamics in a direct and significant
way. (See Fliess, [1990], for a broader discussion of generalized control systems.) In general, all
three components of the triple (z,,%) enter the equation (7), but in Sections 4 and 5 we shall
be principally concerned with high-frequency periodic inputs, and there the most significant terms
will be those involving #. (Suppose z(-) is a periodic vector valued function whose fundamental
frequency is w and whose £, norm is O(1). Then the norm of &(-) is O(w) and the norm of i(-) is
O(w?).) When equation (7) depends on Z that we shall call these systems acceleration controlled.
In the next section, we shall study systems in which all v;;(¢) = 0. We shall also show that the
vanishing of curvature-like quantities is a necessary condition for there to be a transformation to
coordinates in terms of which z and % (but not Z) enter the equations of motion.

Generalized Lagrangian Control Systems Generalized second order control systems arise
in the study of super-articulated mechanical systems. (See Seto and Baillieul [1994] for the basic
theory. These have also been called under-actuated systems in the literature.) The general framework
assumes there is given a Lagrangian L(y,y) defined on the tangent bundle T'Q) of the configuration
space of a mechanical system. Suppose that the generalized coordinates can be partitioned as y =
(r,q) and that exogenous generalized forces (control inputs) can be applied to only the coordinates r,
while the coordinate variables comprising ¢ evolve freely, subject only to dynamic interactions with
the r-variables. In this partitioning, r is an m~tuple and ¢ is an n-tuple of generalized coordinate
variables. The equations of motion for the system take the form

d 8L 0L
@or o v ®
d 8L 0L
&og o ©)

where u is an m-vector of controls, and we suppose the mapping ¢ — %{7’ is invertible. That is,

if the Lagrangian takes the form “kinetic minus potential energy,” i.e. L = %yTM 7 — V(y), and

NoA ) then M = M(r,q)

the inertia matrix is partitioned conformably with (r,q), M = ( AT M




is an n x n invertible matrix. It is also assumed that N' = N(r,q) is an invertible matrix, and
this ensures a one-one correspondence between control trajectories u(-) and trajectories of of the
r—variables. For the purposes of the model, we assume that the components u;(-) are each piecewise
analytic functions on [0, c0), although more general inputs (e.g. impulse trains) are also of interest
and amenable to study.

A simple reduction process eliminating the explicit dependence on the input u(-) leads to a system
of equations of the desired form in which the r—variables and their derivatives play the role of inputs
with the triple (z,v,a) = (r,7,7) controlling the state variables (g, q) according to equation (9).
In this case the dynamical relationship (9) may also be obtained by applying the Euler-Lagrange

operator %8%. - a% to the reduced Lagarangian

1. . .
L(g,4;2,v) = =47 M(g,z)d + v A(g,2)d — V(g; z,v), (10)
2

where V(g; z,v) = V(q,z) — UTN (g, z)v. Writing out the equations of motion explicitly, we have

n m

kaqu + Zauve + Z Tijrdigy + D Y Lejeved; = F(2), (k = 1), (11)

ij=1 j=1¢=1

where

and a;; and m;; are the 7j-th entries in the m x n and nxn matrlces A(q, ) and M(q, x) respectively.

F(t) is a vector of generalized forces Fi(t) = Zk =1 a Favevg. These may be thought of as
coming from a velocity-dependent potential 1f
62agi _ azagj

8qj6zk - aqia.’rk

forall k,£ =1,...,m and i,j = 1...,n. In classical mechanics, the quantities I';;x defined in this
way in terms of the inertia tensor M are called Christoffel symbols of the first kind. To be consistent
with this nomenclature, we call the fgjk input symbols of the first kind.

To define corresponding symbols of the second kind, let m# denote the ij—th element of M2,

Multiplying both sides of (11) by m?* and summing over the index values k = 1,...,n, we obtain
n m . -
qg + Z')’U['Ul + Z F,quq] Z Z ngvlqj = Fa’(t)) (0‘ = 13 v -’n)’ (12)
1,j=1 j=1¢£=1
where

n
_ k
Yot = z m° age,
k=1
n
k
= E m’"Lijk,
k=1
n
= Z m"kI‘(jk, and
k=1

F,(t) = i mo*Fi.(t),

k=1



£ =1,...,m; 0,4,j = 1,...,n. The quantities I'; are called Christoffel symbols of the second

kind, and the f‘fj’s will be called input symbols of the second kind. Modulo a minor change of
notation (Z; = v;), when the generalize potential forces Fi.(t) = 0, equations (7) and (12) are the
same. To be consistent with the terminology introduced above for abstract second order systems,
we shall call systems of the form (12) generalized Lagrangian control systems. Whenever at least
one v;; # 0,1 =1,...,n; j = 1,...,m, these could also be referred as acceleration-controlled
Lagrangian systems. This usage is quite informal at this point, and it will be shown below that
under certain geometric conditions there is a change of coordinates which eliminates the explicit
dependence of the dynamics on any of the 9; terms. Indeed, one of the main results of the chapter
is to provide an invariant characterization of generalized Lagrangian control systems which are
intrinsically acceleration controlled.

Remark 1 Connections with classical Lagrangian reduction. Marsden [1992] describes Lagrangian
reduction for mechanical systems with symmetries which are characterized in terms of a group
action that leaves the (unreduced) Lagrangian invariant. For Abelian group actions, this reduction
was known to Routh in the nineteenth century, but it has been extended to the non-Abelian case
by Marsden and various others cited in Marsden [1992). The idea is that when a Lagrangian is
constant on orbits of the tangent lift of a group action by a symmetry group G acting freely on
the configuration manifold @, these orbits can be “factored out” to yield a reduced configuration
space @/G on which there is defined a reduced Lagrangian system. Symmetries are the key to
this reduction. In the above reduction of Lagrangian systems with inputs, we have assumed no
particular structure other than a natural partitioning of configuration space variable into two sets:
those variables that are directly controlled and those variables whose motions arise solely from
dynamic interactions. Without further assumptions, there is little that can be said in general about
the dynamics of our reduced Lagrangian systems (12). In the next section, we shall show that
curvature-like quantities, defined by the Christoffel symbols and input symbols, and related notions
of flatness play a role in characterizing key features of systems of the form (12). When these
quantities vanish, there is a choice of coordinates with respect to which the inputs and configuration
variables are highly decoupled. The “vanishing” of certain additional curvature-like quantities is a
necessary condition for there to be a choice of coordinates such that the dynamic effects of input
triples (z,%,4%) are completely determined by the configuration-velocity pair (z,%) alone. These
terms will enter the Lagrangian model through velocity dependent potential terms.

Remark 2 Invariance properties of the reduced Lagrangian. An important feature of Lagrangian
mechanics is the invariance of Lagrange’s equations with respect to coordinate changes. Reduced
Lagrangians of the form (10) enjoy essentially the same invariance with respect to coordinate trans-
formations of the form @ = F(g) which are independent of the input z. Letting the inverse trans-
formation be written ¢ = G(Q), the reduced Lagrangian in Q-coordinates is expressed as

£(@,052,0) = 507 M(Q,)Q + 7 AQ,9)Q - (@;,0), (13)

where
ilend

(@, ) M(G(Q), ) %g

)
A(Q,2) = AG(Q),2) %g,
V(Q;z,v) = V(G(Q); z,v).

Invariance with respect to such a coordinate transformation means the equations of motion for the
system in @-coordinates are given by

and



In the following sections, it will be of interest to allow coordinate transformations of the the config-
uration variables which are input dependent: Q = F(g,z). In this case it is possible to propose an
extended notion of invariance for the equations of motion. Specifically, suppose that for some (go, zo)
there is a neighborhood U x V C R™ x R™ containing (go,Zo) and a mapping F : U x V =+ R"
" such that for each z € V, Q = F(q,z) is a diffeomorphism on U. For each z, write the inverse of
this configuration space diffeomorphism as ¢ = G(Q, ). Then in terms of the Q-coordinates, the
reduced Lagrangian again has the form (13) where

- oGT 8G
M(Q,2) = 55 M(G(Q,2),9) 35 (14)
AQ,z) = %g-TM(G(Q,z),z) —g% + A(G(Q,z),z) g—g, and (15)
PQizw) = -#7(AGQ2),5) L + 152 MG(Q,9),2) 5 ) (16)

+V(G(Q, 2);7,v).

Again, we find that our reduced Lagrangian formulation is invariant under this class of input
dependent coordinate transformations. This is summarized in the following proposition.

Proposition 1 Consider a mechanical system with equations of motion prescribed by

doL oL _

dtdq 98q
where L is given by (10). Let Q = F(q,z) be an input dependent change of configuration coordinates
as described above. Then, in Q-coordinates the equations of motion take the same form:

doL oL _ .
oo 06Q

where L is given by (13), with M, A, and V given by (14), (15), and (16) respectively.

(17)

Proof It is straightforward to show that the reduced Lagrangian has the form claimed when ex-
pressed in terms of Q-coordinates. It is a slightly tedious but also straightforward calculation to
show that the equations of motion are given by (17). Alternatively, if the reduced Lagrangian (11)
arises through the reduction process we have described, it may be shown that the claimed invariance
follows from the invariance of the classical Lagrange’s equations.0

3 Flat Systems and Systems with Flat Inputs

This section proposes some basic elements of a theory of normal forms for the velocity and accel-
eration controlled mechanical systems which were introduced in the previous section. We start by
considering an uncontrolled mechanical system which is simple in the sense that it has a Lagrangian
of the form

L= 2" M(@)i - V(9), (18)

comprised of a kinetic and potential energy term. (Cf. Abraham and Marsden, 1978.) The results we
present are steps in a program aimed at developing an intrinsically second order theory of mechanical
control systems.

In the study of first order nonlinear control systems of the form (1), important invariant quali-
tative features of the dynamics are revealed by computing Lie brackets of vectorfields in the family
{f(-,z) : = € U}. We refer to Nijmeijer and van der Schaft [1990] for basic results on Lie bracket



conditions related to controllability, accessibility, feedback linearizability, etc. The theory of first
order control systems also applies to the second order systems treated in the previous section if we
represent them in the usual way as first order systems (of twice the dimension) with generalized
forces playing the role of control inputs. Our goal in the present section is to describe an intrinsi-
cally second order approach in which curvature provides an invariant measure of nonintegrability.
It is worth remarking that while there has been a great deal written over the past 25 years making
connections between analytical mechanics and nonlinear control, a question which remains almost
completely unanswered is whether there can be found an intrinsically second order theory of con-
trolled mechanical systems. Almost the last word on this subject in fact appeared in Brockett’s
NASA Ames lectures.

The section discusses the role of curvature in three different settings. First, we recall the basic
result that the vanishing of the curvature tensor associated with the Levi-Civita connection of
an uncontrolled simple mechanical system (18) is necessary and sufficient for the existence of a
coordinate system with respect to which the inertia tensor is the identity matrix. Second, for the
case of a simple mechanical system in which every degree of freedom is independently actuated,
we recall that in the Hamiltonian setting the same curvature vanishing implies the existence of a
(canonical) coordinate transformation together with a state feedback transformation, not involving
conjugate momentum variables, transforming the dynamics into a decoupled set of second order
integrators. Finally, we consider generalized Lagrangian control systems of the form introduced in
the previous section. For these systems, there is defined an input connection and related curvature-
like quantities. The vanishing of both the curvature defined by the Levi-Civita connection and
the curvature defined by the input connection is necessary for the existence of an input-dependent
change of configuration coordinates under which the inertia tensor is transformed to the identity
matrix and all terms depending on input accelerations in the dynamics are eliminated. Thus for
the subclass of generalized Lagrangian control systems for which the Levi-Civita connection has
zero curvature, the vanishing of the curvature of the input connection is a necessary condition for
an acceleration controlled mechanical system to be reducible through a change of coordinates to a
velocity controlled mechanical system.

The simple Lagrangian (18) gives rise to the Lagrangian dynamics:

- " & .. OV ,
> mii(g)d; + > Thjideds + 30 = O (i=1,...,n), (19)
i= jk=1 &

where the I'yj; are the Christoffel symbols of the first kind introduced in the previous section. The
terms they define in equation (19) describe the inertial forces (Coriolis and centrifugal) which affect
the system. It is clear from this equation that if M does not depend on g, I'xj; = 0 for all k, 7,4, and
these inertial forces will not play a role in the system’s dynamics. An interesting question is “When
can we find a change of coordinates such that in the new coordinate system the inertia matrix is
constant?” Note that the inertia matrix M is constant (i.e. does not depend on the configuration
variables q) if and only if there is a system of generalized coordinates (y1,...,¥») in terms of which
the kinetic energy is expressed as > -, 97. (Proof: In the case that M is constant, we let ¥’
denote the constant, symmetric, positive definite matrix square root of M and let y = Yq. Then
Y= fY)q‘, and the kinetic energy is %Zz j mi;gig; = %21 y2. The reverse implication requires no
proof.

Hence, whether we can find the desired change of coordinates amounts to whether there exists
a diffeomorphism y = F(g) such that 1¢7M¢ = ||g||*>. Suppose such an F exists. Then j = -‘Z—{:q,

T
and &£ %% = M. For such an M we compute

omg; i 0%F, 0F, OF, 0°F,
Oqx, Z; (3%3% dg;  Og; aq]'aq;c)



From this it follows from an easy calculation that

1 amij amik Bmkj
2(3% "By 0w )
B 2”‘: 8°F, OF,

£~ 9q;0qi Ogi

Cji

(20)

As defined in Section 2, the Christoffel symbols (of the first kind) T'x;; are associated with a con-
nection (the so-called Levi-Civita connection defined by the inertia tensor M ) and a Riemannian
curvature tensor. It is a classical result that this tensor vanishes if and only if there is a diffeomorphic
change of coordinates @ = F(q) such that the inertia tensor may be factored as M = JE - Jp where
Jp is the Jacobian of F. To see this, we first write down the corresponding Christoffel symbols of

the second kind: "
Ff:j = Z m“l‘kﬁ.
i=1

The Riemannian curvature tensor is prescribed by the corresponding Riemann symbols of the first
kind:

ki OTj < ”
Rijre = —gélk— - -5;—:- + Z(F‘}griko —T%Tito)- (21)
o=1

If F(-) is a diffeomorphism (local coordinate transformation) such that M = JE - Jp,

Ty ~~, O°F, OF, 0°F, O°F,
Zogh Z( -2 4 ,
Oqx 0qr0q;0qe Oq; ~ 0q;0q¢ 0qiOqx

o=1

and a permutation of indices gives a similar expression for %{;—". It is straightforward, although a

little tedious, to show that

n

*., 8°F; 0*F; 0°Fg 9°Fp
% Tite — T%Tike) = - .
(F54ite = T5eTiko) [,Zz:l(aqit?qk 0q:0qc  09;0q¢ 0q:dqx

o=1

Hence R;jr; = 0, proving that the curvature vanishing is a necessary condition for there to be a
factorization of the desired type. For a proof of sufficiency and a broader discussion of curvature
and its vanishing, the reader is referred to Kobayashi and Nomizu [1963] or Wolf [1972].

Remark 3 The Riemannian curvature may equivalently be characterized in terms of Riemann
symbols of the second kind:

; AL, 0% | =m0 i ;
Ry = B—q,; - ?972— + };l(rkiria - T3T%)

g ke=1,...,n.

It is not difficult to prove the very direct relationship between Riemann symbols of the first and

second kinds: "

R’y = Z m?* Roike.

o=1

Remark 4 While there are n* components of the curvature tensor, these are not all independent,
and the Riemann symbols associated with the Levi-Civita connection can be shown to satisfy:

" Rijre + Rirej + Rigjr = 0,
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Rijke = —Rijer, and
Rijre = Ryesj-
(See Dubrovin et al. [1984], Theorem 30.2.1.) It is not difficult to show that these symmetries
imply that only n?(n? — 1)/12 of the Riemann symbols of the first kind are independent.

Definition 4 A simple mechanical system of the form (19) will be called flat if the corresponding
Riemannian curvature tensor (i.e. the set of Riemann symbols of the first kind) is zero.

Bedrosian [1992] and Spong [1998] have noted that this type of flatness points to simplified
control designs in the case of fully actuated Lagrangian and Hamiltonian systems. We review
the basic ideas and then turn our attention to the more complex (and more interesting) case of
super-articulated (or underactuated) systems. Consider a mechanical control system specified by a
Lagrangian L(q,¢) = %QTM (¢)g — V(g) and equations of motion

d 8L OL
dtdq; Og;
where each u;(-) is a piecewise continuous control input (function of time defined on a suitable

interval). The conjugate momentum vector for this system is p = M(q)¢ and in terms of the
Hamiltonian defined by the Legendre transformation

=y ({E=1,...,n),

H(g,p) = ¢'p-L(gq)
= PTM@) P+ V), (22
we define the corresponding Hamiltonian control system
. 6H
1= %
p = —%—ZI +u. (23)

It has been noted (See, e.g. Bedrosian [1992] and Spong [1998].) that if a system is flat there is a
canonical transformation together with a control and feedback transformation such that in terms
of the new phase space and control variables, the system (23) takes the form of a system of double
integrators.

To understand this, suppose the mechanical system is flat. Let M li(q) be the n x n positive
definite symmetric square root of the inertia tensor M(q). If there exists a function F(g) such that
% = M%(q) as above, then the coordinate transformation Q@ = F(g), P = M % (g)d is canonical—in
the sense that it preserves the symplectic form. We refer the reader to Marsden and Ratiu [1994] or
Arnold [1989] for a discussion of canonical transformations. That this transformation is canonical is
easily seem if we write

1 oF
P-dQ = ¢*Mi(q) —d
Q q (@) g

§" M (q)dg
= p-dq.

We rewrite the Hamiltonian in terms of Q, P—coordinates:

H(q,p)

%pTM(q)_lp +V(9)

= MM+ V()
= SIPIP+V(Q),

= H(Q,P),

11



where V is defined by V(Q) = V(q).
Proposition 2 In terms of the variables Q, P, the equations (23) may be written as

Q = P
R oy 1
P = ———+ M 2u. 24
e (24
Under the feedback u = Miv+ M3 g—g, which is independent of the conjugate momentum variables
P, this Hamiltonian control system is transformed into the system of double integrators

Q =P
P = (25)

Proof: The coordinate change associated with the Legendre transformation may be written
explicitly as

Q = F() (26)
-1
(%—Z) p (27)

(since %q = (83—5)“1;7). We wish to find the equations of motion in terms of ¢}, P—coordinates.

Differentiating (26), it is clear that @ = P. Differentiating (27), we find that
. d fOF\-1 OF\-1,
Po= Ig(5) e+ (F) 0
d (OF\-1 OF\-10H dFy\ -1
= [g(3) P-(3) 5+ () «

Using the definition of the coordinate transformation (26)-(27) together with the symmetry proper-
ties of % = M(q), it can be shown that

8 QT apT
(ﬁ 8(;)( 0 1)(;@" 3—qT)=< 0 I).
% o -I 0 0 % -I 0
From this it follows that
[i(a_F)“l] _ (3_F)"1§§ __oH_ o
dt\ Oq dq dqg ~ 0Q  8qQ’
proving the first part of the proposition. The second part is clear. O
More generally, a system of the form (7) or (12) is said to be flat if the Riemannian curvature
tensor prescribed by the Christoffel symbols I‘{Fj vanishes. In terms of the Lagrangian system (10),
if the inertia tensor M does not depend on the input z, then the vanishing of the curvature tensor

is necessary and sufficient for there to be a change of generalized coordinates § = F(q) such that
the inertia tensor expressed in terms of the §—coordinates has entries

o _ 1 i=j
si={0 1%}

For the case in which M = M(q,z), explicitly depends on the input z, it is still possible to have
the Riemannian curvature tensor vanish. (Of course, in this case, the Riemann symbols themselves
will have no dependence on the variable z.) This vanishing is a necessary and sufficient condition
for there to be an z-dependent coordinate transformation with respect to which M is transformed

12



into the identity matrix. Let § = F(q,z) be such a coordinate transformation, and let ¢ = G(g, )

be its z—dependent inverse. Then M(g,z) = %‘:—'T%%, and in §—coordinates, the Lagrangian (10)

takes the form

~ , 1. T Tre nr Ty .
L:((j, ‘j; III,:E) = 5”‘1“2 + ZTA(qﬂ :v)q - V(q’ T, $), (28)
where O
A(‘jv :l?) = A(G(m $)1x)5'('7' - E; )
and

- . _ .\ .7 ,0G 1 0FTOF
V(G =, &) = V(G(3,2); 7, 2) — mTAgx“ - _ingz- e

with all component entries in %% being evaluated at ¢ = G(g,z). An interesting question is “When

do the coupling terms A(q, z) vanish?” The following definition is useful in formulating the answer.

Definition 5 (i) For the second-order generalized control system (12), we say that the hatted
symbols I‘{Fj define the input connection. The input connection is said to be flat if the associated
Riemann symbols of the second kind

. ) P o A
Rj'yzi = 6a:~y - 69:5] + Z(Fejf?k - Tfjl‘?k)
v k=1

vanish for all ,£=1,...,m; j,7=1,...,n. (ii) Given the second order generalized control system
(12), we say that the pair (z, %) constitutes a set of flat inputs if the input connection is flat.00

The desired result on the structure of the Lagrangian control system (12) is the following.

Theorem 1 Consider the Lagrangian control system (10). Let U x V' C R™ x R™, and suppose
that F: U x V = R" is an input-dependent change of coordinates § = F(g, z) such that for each z
the metric tensor M expressed in §—coordinates has d;; as its ¢j—th entry. Suppose, moreover, that
in the §—coordinates all cross coupling terms A(g,z) vanish. Then the system (defined by (10))
is flat and has flat inputs, which is to say both the hatted and unhatted Riemann symbols of the
second kind,

ory, oy &

ijaﬂ = das 5_;11 + ;(Fﬁj%k ~ T o)
LYo B=1,...,n,
and
Y Y n
quei = aal;f - % + Z(f‘?jf;'yk - f?jf‘Zk)
iL,l=1,...,m; k;,17= 1,...,n,
vanish.

The proof of this theorem uses the following lemma.

Lemma 1 Let U x V C R™ x R be some neighborhood of (0,0), and let f; : U x V = R" be a
smooth mapping for j = 1,...,m. Given g € V, there is defined a neighborhood W of 0 € R™ and
a smooth function g : W — IR™ such that

(i) 9(0) = g, and

13




fi(r,g(r)) forallr e W,j=1,...,m
g) on which

(i) 2 (r) =
if and only if there is a neighborhood of (0,

Bf 6f1 af k af’- k
ér—j—arj Z( i A

This lemma is proved in Spivak, [1970]. We can now prove Theorem 1.

) be as in the hypothesis of the theorem. Then using

Proof (of Theorem 1). Let § = F(q,z
Proposition 1 at the end of Section 2, the §—coordinate rendering of the Lagrangian (10) is

Al= = 1 '_T ~, - . T/ = S N/ =
£, 3;2,v) = 58 M(@,2)]+v"AG,2)d - V(G 2,v)
where the various terms correspond to those given by formulas (14)-(16).

The hypothesm that M has coordinate entries d;; is equivalent to writing & 3_ M %f = I, and
since %f Ef , we conclude that M(q,z) = %f; %’; The argument used at the beginning of this
section shows that the Reimannian curvature tensor associated with this M(q, z) is therefore zero

The second part of the hypothesis is the statement that

aGT
- Milg,z) + Alg,z) =0.

Oz

Using the fact that
oG oF 1
%(F( ,IE),IE) '5— (qvx)

together with the assumed factorization M = 5" 5o,
equation is equivalent to

T
A(G(4,9),2) 52 (0(g.0),5) = 3 (6(@.2),a),

which is in turn equivalent to writing
OFToF
Alg,z) = 5z ;9—(1' (29)

in terms of the original coordinates. The componentwise rendering of this equation is

zaFkaFk Z:l,...,m
Or; 8g; t=1,...,n

Similarly, under the hypothesis of the theorem,

OF; 0F . .
Z ,7=1...,n.
k=1 a‘h a(I]

It is a straightforward calculation to show that

6mkj aagk aag] _ 62Fa 6Fg
0z, + dg; Z 8g;0z¢ Oqi.

14



We have called this quantity the input symbol of the first kind f‘gjk and we define the associated
input symbol of the second kind by

n
& _E : k.
Flj" m Fl]k
k=1

where m#* is the pk-th entry in M~1. Using these definitions, one can show that

oF; oF;
0g; n Aqx
ARk
6:51 : - %] .
OF, k=1 OF,
dg; gk

This is a partial differential equation, conditions for the solution of which are covered by Lemma
1. Specifically, for each F; we are interested in conditions under which there exists a function
g: R™ = R" satisfying

52 = fe(z, g(z)) (30)

where

According to Lemma 1, a necessary condition for the solution of (30) is that

8fe Ofi  ~~,0ft & Ofi oy _
3:1:,' 8:1213 +Z(szf" 3zk fl) =0.

k=1

This is rendered (componentwise)

n af"Y o =\ fag a Pk T
Z(_bx—l: B ij )2«, + (FijZkzv - Fffr}kz”) =0

=1 v=1

Since this must hold identically in z = (z1, ..., 2s), we have the desired conclusion that

o) o P ) oA S
4w kDY —TET7 ) =0. O
55, Dme +k§=1(FfJF1k F,Jrek) 0

Remark 5 In light of the identity noted in Remark 3, it is clear that the vanishing of both the
Riemann Symbols of the first kind and input symbols of the first kind is similarly a necessary
condition following from the hypothesis of Theorem 1.

Definition 6 If there is a choice of coordinates § such that the inertia tensor expressed in §-
coordinates is the identity and the cross coupling terms A(q, z) vanish, we refer to the §—coordinates
as flat coordinates.

Remark 6 The vanishing of all the Riemann symbols (of the first or second kind) may be shown
to be sufficient for the existence of an input-dependent change of coordinates such that the inertia
tensor M(q,z) is transformed into the identity matrix. The argument can be constructed along
classical lines, and the reader is referred to Spivak [1970] for details.

When the curvature associated with the Levi-Civita connection of the reduced inertia tensor M
(equation (21) does not vanish, it is not presently known whether the vanishing of the input symbols
is sufficient to eliminate the appearance of input accelerations in (12).
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Remark 7 Sections 4 and 5 will treat the connection between the geometry of second order control
systems and recent results on averaging. Many (indeed most) of the hard results to date which
describe close connections between the qualitative dynamics of averaged and nonautonomous versions
of Hamiltonian and Lagrangian control systems with oscillatory inputs have been established for the
case of single input systems. We note that the input connection is trivially flat for single input
systems.

To develop physical intuition regarding the vanishing conditions in Theorem 1, we consider some
prototypical controlled mechanical systems, beginning with rotating heavy chains.

Example 1 (Rotating heavy chains) The global dynamics of a heavy (hanging) chain undergoing
forced rotations about a vertical axis will be crucially dependent on how the joints between the links
of the chain constrain the possible relative motions of the links. This dependence has been explored
in Baillieul and Levi {1991]. Further insight into the global dynamical effects of relative motion
constraints may be developed in terms of the curvatures defined above. Consider the two rotating
pendulum systems in Figure 1. Both pendula undergo controlled rotations about the vertical axis.
In Figure 1(a), the joint by which the pendulum is suspended is a single degree-of-freedom revolute
joint, while in Figure 1(b), the link is suspended by a (two degree-of-freedom) universal joint. The
respective Lagrangians are

. 3 I3 2 -
Li(¢,¢;6) = _722((12 cos® ¢ + £%sin? )82 + (€% + 22_)¢2 +mglcos¢

and

La(¢, %, 6,9 6) (12 + < (1+ sin® ) ¢ + (5 +12) 92

("2—2 —12) cos ¢ sin(29) 0 + (a® + 212) sin ¢ 6
(a2 cos? ¢ cos? i

+(122- +12) (sin? ¢ 4 cos ¢sin® 1/))) 62

+ mgl cos¢ cos.

+ 4+l

The corresponding dynamics of the controlled equations are

4 [%(a2 cos® ¢ + £2 sin® ¢)é]

2 a : (1)
(> + )¢ +m(a® — ) sing cos ¢6° + mglsing = 0,
and (in abbreviated form)
d 0oLy _
T
d 0Ly 0Ly _ d 0L, 0Ly _
dt o 8¢ ' dtoy Y 0. (32)

In both cases a torque u is applied to control the angular velocity § of rotation about the vertical
axis. (See Baillieul [1987] and Marsden and Scheurle [1993] for more information about rotating
heavy chains.) Applying our formal reduction procedure, (10) is rendered respectively

. . 2 . -
£1(6,436) = T (€ + 38 V(i) (33)
where i
V1(;6) = —(a® cos® ¢ + £2 sin® $)§% — mglcos b,
and . .
Lo bisd) = 36D Mo (G )+ (5 ) -atousd (30
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where

Mz = Ma(g,y) = | FO ¥+ g o
’ 0 <2 )’

(9; _ 12) cos ¢ cos sin

= Ay($y9) = (5 +2) sng ’

and
Vo(d,9;8) = -3 (a2 cos? ¢ cos? 9 + (923 + lz) (sin® ¢ + cos ¢ sin’ z/;)) 62
—mgl cos ¢ cos.

The significant difference between the two rotating pendulum systems is the absence or presence
of the coupling terms A in (33) and (34) respectively. The rotating planar pendulum (31) feels
the influence of rotation only through velocity terms involving 6. The dynamics of the universal
joint pendulum (32), however, depend on both the angular velocity 6 and angular acceleration 6. A
natural question which arises is whether there is a change of coordinates which makes the dynamics
(32) dependent only on 6 and not on the acceleration 8. Theorem 1 provides a partial answer, but
before considering this in detail, we also examine the Riemann symbols of the first kind for the
inertia tensor of the unreduced rotating universal joint system:

o Ma(d,0)  Ax(o,¥)
Ma(¢,9) = < Af(qﬁ,@b) Mz(dmb))

where My and 4, are as above, and

Na(o,v) = a® cos® pcos® i + ( +l2) (sin® ¢ + cos® ¢ sin® ) .

It is a straightforward calculation (which is tedious, if you don’t use computer algebra) to show
that none of the six independent Riemann symbols of the first kind associated with the 3 x 3 inertia
tensor My (¢, ) is zero. We can compare this with the results obtained by evaluating corresponding
Riemann symbols and inputs symbols for the reduced Lagrangian system defined by Ma(¢,%) and
As((¢,). For the 2 x 2 tensor Ma(¢,v), the curvature tensor is defined by the single Riemann

symbol
2

—(2_%
R1212 = (Z 2 )(COS 2¢

(e - ﬁ) sin? 29 )
8(f2cos?p + & [1 + sin? 9])

The input connection is nonzero in that

Pg = (£ + L )cosd) - (— — £%) cos ¢(cos? 3 — sin ¢h).

It is obvious from the definition, however, that the input symbols for any single input system, such
as this, are going to be zero.

The answer to the question of whether there is a change of coordinates which eliminates the
dependence of the equations of motion on input acceleration terms is not completely resolved by
these calculations. The nonvanishing of the curvatures associated with both the 3 x 3 inertia tensor
of the unreduced system and the 2 x 2 inertia tensor of the reduced system imply that there is no
change of coordinates such that the dynamical dependence on input accelerations is eliminated and
the dynamics of the configuration variables ¢ and 1 are also decoupled. Whether one can simply
eliminate the input accelerations by a choice of coordinates in which there is inertial coupling of the
¢ and 1 dynamics remains for the moment an open question.
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Example 2 Controlled planar body with pendulum attachment Here we consider a pair of rigid
bodies which are connected by a simple frictionless single degree-of-freedom hinge as illustrated in
Figure 2(a). One of the bodies (the larger one depicted in the figure) is assumed to have actuators
allowing its motion in the plane to be controlled to follow any prescribed smooth path. No actuation
is applied directly to the pendulum, and hence it moves entirely under the influence of gravity and
motion of the controlled body. Take as generalized coordinates for the system z (the horizontal
displacement of the large body), y (the vertical displacement of the large body), and 8 (the angular
displacement of the pendulum from the vertical, downward pointing configuration). The 3 x 3 inertia
matrix M in this case is given by

Mg + Mp 0 mpf cos
M= 0 me +mp mplsinf
mplcosf myplsinf I

The sub-blocks of the inertia matrix M which are of interest are A = A(f) = (mp€ cos 6, mpfsinf)
and M = I, where m, is the mass of the controlled body, m, is the mass of the pendulum, I, is
the pendulum inertia about the hinge point, and £ is the distance from the hinge point to the center
of mass of the pendulum. Thus in the reduced Lagrangian control system, z and y are the inputs,
while 4 is the configuration variable whose motion is governed by the reduced Lagrangian dynamics.

The Christoffel symbols of the first kind associated with the Levi-Civita connection of the unre-
duced inertia tensor M are all zero except for I'33; = —mp€sin§ and I'sz2 = mpfcosf. Nevertheless,
the Riemann curvature tensor (21) vanishes, and from this we conclude that there is a choice of
coordinates with respect to which the inertia tensor takes the form of the identity matrix. It is
also easy to verify that the vanishing conditions of Theorem 1 are satisfied. Indeed, the reduced
inertia tensor, M = I, is a scalar, and hence the Riemannian curvature is trivially zero. The input
connection f‘l,-j, 1,7 = 1,2 is zero, and hence the input curvature is also zero.

Example 3 Controlled planar body coupled with extending pendulum attachment The concluding
example treats another system for which the curvature vanishing conditions of Theorem 1 are not
satisfied. The mechanism depicted in Figure 2(b) is similar to the previous example, with the
significant difference being that we assume there is an internal mechanism which causes the length
of the pendulum attachment to depend on the z-coordinate of the body. Specifically, we assume
the length of the pendulum is az, where a > 0 is some fixed constant. We assume again that
the pendulum is attached by a frictionless hinge. To simplify the discussion (and with no loss of
generality) we idealize the model so that the pendulum is comprised of a point mass m; and a
massless linkage between the point mass and hinge. The inertia matrix M in this case is given by

Mg +my + mpa? + 2mpasind —mpacosd myazcost
—mpa cosf me+my mpazsing
mpox cos 8 mpazsingd  mpaiz?

While this example is admittedly somewhat artificial, it serves to illustrate some of the features
of the flatness properties we have discussed. As in the previous example, the inputs here are taken
to be the x and y positions of the controlled body. We analyze “nonintegrability” in the dynamical
relationship between the input variables and the configuration 4 of the attachment in three different
ways. First, in computing the components of the Riemann curvature tensor (21), we find that all
six independent components are zero except

N(6)
1—2a) cos?8 sin@my2 + (1 + a2 + sinf) my me + m4?)

Ryz13 = 50

where
N@) = “(("1 +20a) my (—2 (-1+2a) cos*§my2—
(=3 + cos(26) — 4 sinf — 4a® sinf) mym,
- +4 sian,ﬂ))
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This means of course there is no change of (z,y,8)-coordinates such that the unreduced inertia
tensor M has the form of the identity matrix. Secondly, we analyze the reduced Lagrangian in light
of Theorem 1. Since in this case the reduced inertia tensor M(8;z,y) = mpa?z? is of dimension
1 x 1, we shall only need to analyze the input connection to verify the hypotheses of the theorem.
The input connection has two components: I'}; = 2 and I'}; = 0. That I'}; is unbounded as z — 0
reflects the fact that the inertia tensor is singular in the z = 0 limit. Although the input connection
is nonzero, the vanishing of all the relevant curvatures shows that it is flat in the dense of Definition
4. Thus the necessary conditions of the theorem are satisfied. Since we know there is no choice
of coordinates in terms of which M is rendered as the identity matrix, the necessary conditions of
Theorem 1 thus fail to be sufficient. The theory at present does not answer the question of whether
or not the system can be rewritten in such a way that the dynamics do not depend on accelerations
of the inputs.

There is a third and final sense in which the influence of the inputs (z,y) in this example is
nonintegrable, and this will be discussed in the following section.

4 Averaging Lagrangian and Hamiltonian Systems with Os-
cillatory Inputs

For systems such as Example 1(a) where we may express the Lagrangian as the sum of a simple
kinetic energy term plus a time-dependent potential, it is natural to conjecture that given small-
amplitude high-frequency periodic inputs z(-), their influence is approximately equal to the effect
of a potential force determined by the time-averaged potential. There is a growing body of theory
concerning the conditions under which this conjecture is true. (See Weibel {1997] and Weibel and
Baillieul [1998] for details.) The role of flatness and flat inputs in determining the dynamic response
of (11) undergoing high frequency oscillatory forcing is not completely understood, but it is clear
that the analysis can be simplified considerably for systems which are flat in the sense described.
One specific simplification which occurs for the case of flat systems with flat inputs is that the
averaged potential may be computed (with respect to flat coordinates) by taking simple averages
of the amended potential V(g;z,v) in (10). For systems for which we cannot find flat coordinates,
there seems to be additional complexity and additional steps in the analysis. One approach which
works (at least formally) in the general case is to move to the Hamiltonian setting. Here it is always
possible to write down the averaged potential.

As a general starting point, we return to the Lagrangian control system (10) which we rewrite
here:

. 1. . )
L(g,4;%,v) = §qTM(q, z)g + vT A(g, z)d — V(g; 7, v).

To transform to a Hamiltonian formulation, we perform a Legendre transformation, writing H =
pT ¢ — L and expressing # in terms of (g, p). This # is a noncanonical Hamiltonian which takes the
form

Hla,p;,0) = 5(p — AT0) M (p = ATv) +V (35)

We expand equation (35) and apply simple averaging to yield the averaged Hamiltonian:

Hig,p) = %p‘ M=1p—vTAM=Tp+ % vTAM=TATY + V. (36)

Here the overbars indicate simple averages over one period (T') have been taken: given any piecewise
continuous function F(g,p,t), the simple average is given by F = fOT F(q,p,t)dt, where for the
purpose of evaluating this integral ¢ and p are regarded as constants.

For H, there is an obvious decomposition into kinetic and potential energy terms in the case that
T =1 — (-
vTAM-1 =0
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Hig,p) = %p’ M=lp+ % VTAM=1ATy 4+ V. (37)

~ o
v e

avg. kin. averaged potential

energy

There are a number of conditions under which ¥T AM~—! = 0. This will trivially be the case when
we are able to find a choice of coordinates with respect to which the 4 terms do not appear in
(10). In Weibel and Baillieul [1998] it was shown that for zero-mean input v(-) exactness of the
1-form M~(q,x).A(q,z) dz is also sufficient to guarantee that vTAM-1 = 0. We remark that
this exactness condition is satisfied for the systems in Examples 1 and 2 but not Example 3 in the
previous section.

In the case that vT AM—1! # 0, it remains possible to decompose the averaged Hamiltonian (36)
into the sum of averaged kinetic and potential energies, although the description becomes more
involved. If © # 0, then the corresponding input variable z(t) will not be periodic. There will
be a “drift” in the value of z(t) which changes by an amount ¥ - T every T-units of time. We
may nevertheless study averaged Hamiltonian systems in this context. We rewrite the averaged
Hamiltonian (36) as

— -1
H(g,p) %pIM“lp—vTAM‘1p+ -;—UT_AM-I (M—l) M-1ATy

-1 _
+% T AM-1Ap — -21-’UTAM"1 (M—l) M-1ATy +V

-1
- %(M‘lp—M‘lATU)T(M‘I) (MTp — MTATy) (38)

N

averaged kinetic energy

-1 _
+ -;-UTAM"IAT'U - %vTAM—l (1) MTATs + V.

v

averaged potential

The formal distinction which appears between the zero-mean and non-zero-mean cases ((38) and
(39) respectively) is that in the latter case both the averaged kinetic and potential energy terms are
adjusted to reflect the net (average) motions of the input variables (z(-),v(-)). There are important
relationships which can be established between the dynamics associated with the averaged Hamilto-
nian (39) and the dynamics of the periodically forced system. The reader is referred to Weibel, 1997,
Weibel et al., 1997, and Weibel & Baillieul, 1998 for details. It is important to mention that for
mechanical systems in which ¥ # 0 and M depends explicitly on z in (35), the averaging analysis of
this chapter may not provide an adequate description of the ' dynamics. Indeed, in this case, ||z(t)]|
will not remain bounded as t = oo, and if M(z(t), g2) also fails to remain bounded, the averaged
potential will inherit a dependence on time which will make it difficult to apply the critical point
analysis proposed below. Despite this cautionary remark, we shall indicate how our methods may
be applied in many instances where ¥ # 0.

5 Stability and Flatness in Mechanical Systems with Oscil-
latory Inputs

The Lagrangian (10) gives rise to the Lagrangian dynamics (11), which we rewrite here as

n m n
kajq.j + Zalkill + Z Fijktinj +
j=1 =1 i,j=1 J

Zf‘[jkvgq_j =F(t),(k= 1,...,”), (39)

n m
=1 {=1
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where I;;; and fgjk are defined as in Section 2 in terms of the entries a;; and m;; in the m x n and
n x n matrices A(g,z) and M(q,z) respectively. We seek to understand the stability of responses
to oscillatory forcing of (11) in terms of the corresponding averaged potential which was introduced
in the previous section.

-l _
Vale) = %vTAM-lATv - %vTAM-l (M—l) M=1ATy + V. (40)

An answer to this question is provided by the averaging principle for Lagrangian systems:
Averaging Principle for Periodically Forced Lagrangian Systems: The dynamics of the
periodically forced system (11) are locally determined in neighborhoods of critical points of the
averaged potential Va(g) as follows:

1. If ¢* is a strict local minimum of V4(-), then provided the frequency of the periodic forcing
v(-) is sufficiently high, (11) will execute motions confined to a neighborhood of ¢*.

2. If (¢,p) = (¢*,0) is a hyperbolic fixed point of the averaged system (11), then there is a
corresponding periodic orbit of (11) such that the asymptotic stability properties of the fixed
point (g*,0) of the properly averaged version of (11) coincide with the asymptotic stability
properties of the periodic orbit with respect to (11).

O

Roughly but simply stated, the averaging principle for forced Lagrangian systems says that for
periodic forcing functions v(-) of sufficiently high frequency, the dynamics of the averaged system
provide a good local approximation of the dynamics of the nonautonomous (forced) system. Unfor-
tunately, this averaging principle is less than a theorem, and it has been rigorously established only
in special cases. We highlight several of these in the present section and refer to Baillieul [1995] and
Weibel and Baillieul [1998] for further details. The main idea, of course, is that for sufficiently high
frequencies the effect of forcing (11) with an oscillatory input v(-) will be to produce stable motions
confined to neighborhoods of relative minima of V4(-). A naive approach to stability analysis is to
linearize the dynamics (11) about such relative minima. Unfortunately, it is only in special cases
that such linearizations captures the stabilizing effects implied by an analysis of the averaged poten-
tial. Indeed, it turns out that in general, the averaged potential depends on second order jets of the
coefficient functions A(g) and M(q). (We continue to assume that M and A depend on the input
 in general, but we suppress this variable to simplify notation in the present section.) To further
simplify the presentation, we shall restrict our attention to the case of zero-mean oscillatory forcing
in which M1 ATy =0.

Suppose qq is a strict local minimum of (40). Applying a high-frequency oscillatory input v(-), we
shall look for stable motions of (11) in neighborhoods of (g,¢) = (go,0). Of course, even when there
are such stable motions, (go,0) need not be a rest point of (11) for any choice of forcing function
v(-). (Cf. the “cart-pendulum” dynamics treated in Weibel et al. [1997].)

To analyze the relationship between (11) and (40) in more detail, let us assume go = 0. This
assumption is made without loss of generality, since we may always change coordinates to make it
true. Write

A(g) = Ao + Ai(g) + A2(g) + h.ot,;

M(q) = Mo + Mi(q) + Ma(q) +h.ot.,

where the entries in the n X n matrix My(q) are homogeneous polynomials of degree k in the
components of the vector g, and similarly for the m x n matrix Ag(g). The averaged potential has
a similar expansion, which we write:

Va(g) = Vo + Vi(g) + Va(q) + hoot.,

All terms in all these expressions may depend on the input z, but we do not explicitly display this
dependence. We note, however, that each term in the expansion of V4 is the sum of a term of the
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same order in the original potential plus an algebraic function of entries in terms up to the given
order in the expansions of A and M.

There are two essentially different cases which can be described in terms of these expansions.
The case that Ay # 0 is qualitatively quite different from the case in which A4 = 0. It is associated
with qualitative dynamical behavior we have referred to as hovering motions. These are motions
confined to neighborhoods of critical points of the averaged potential which are not equilibrium
points of the corresponding forced or nonautonomous system. We will not treat this case further,
and refer to Weibel and Baillieul [1998] for further details. We suppose in the remainder of the
section that 4y = 0, in which case 0 is both a critical point of the averaged potential and a rest
point of the forced system (11). We’ll show that in this case the averaged potential depends only on
first order jets of the coefficients of (11) when A(go) = 0. In Weibel and Baillieul [1998] it has also
been shown that the condition .A(go) = 0 is also necessary and sufficient for the local minimum go
of the averaged potential to define a corresponding fixed point (rather than a periodic orbit) of the
forced (nonautonomous) Hamiltonian system associated with (10).

Slightly refining our notation, let .A¢(g) denote the £-th column of the n x m matrix AT (g). Then
we have

Af(q) = AL - g + (terms of order > 2), and

M(q) = My + (terms of order > 1),

where we interpret Mo, Al,..., AT* as n x n coefficient matrices. Using the same notation, we also
have an expansion of the (original) potential function:

1
V(g) = 5quzq + h.o.t.

We recall the following result.

Proposition 3 Suppose v(-) is an R™ -valued piecewise continuous periodic function of period T > 0

such that o = %fOT v(s)ds = 0. Suppose, moreover, that Agp = 0. Then the averaged potential of
the Lagrangian system (11) agrees up to terms of order 2 with the averaged potential associated with
the linear Lagrangian system

m
Moii+ 3 (veAbq +ve(Af - A")q) +V2-q=0. (41)
£=1
Proof: The proof follows from examining a series expansion of V4 about the point ¢ = 0. We refer
the reader to Weibel and Baillieul {1998} for details.O
There are several points worth noting here. First, (41) is exactly the usual (tangential) lineariza-
tion of (11) with respect to the state variables (g,¢) about the rest state (¢,4) = (0,0). Also, if
contrary to the hypothesis Ag # 0, then such a linearization does not give a valid local approxima-
tion to the dynamics of (11), and the Hessian of the averaged potential (40) involves terms of higher
order in both 4 and M.
A deeper connection with stability is now expressed in terms of the following theorem.

Theorem 2 Suppose w(-) is an R™-valued piecewise continuous periodic function of period T > 0
such that w = %fOT w(s)ds = 0. Consider the linear Lagrangian system (41) with input v(t) =
w(wt), and suppose AfT = Af for £=1,...,m. The averaged potential for this system is given by

1 e S
Va@ = 5" (M + 3 o AiMe Al g, (42)
i,j=1
where o;; = (1/T) fOT wi(s)w;(s)ds. If the matriz %})A is positive definite, the origin (q,q) = (0,0)
of the phase space is stable in the sense of Lyapunov provided w is sufficiently large.
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O
This theorem has been proved in Baillieul [1995]. Its proof apparently requires the assumption

that the coefficient matrices A{ are symmetric. Suppose M(q,z) = M(qg) does not depend on z.
Then

Ay aaek aagj

I'ljk = — — —=,

dg; O

and T'g;x(0) is the jk—th element in the skew symmetric matrix A{T — A{. Thus, in this case, the
hypothesis that A} is symmetric for £ = 1,...,m is equivalent to assuming the input connection
vanishes at the rest point. If A% is not symmetric, the vanishing of the input symbols R;-Ya is
equivalent to the set of matrices

T -
{(A8 —AHM e=1,...,m}

being commutative. These observations are interesting, because it is precisely in cases where flatness
is present that we are able to prove the stability of motions based on an analysis of the averaged
potential.

6 Concluding Remarks

Like many of the chapters in this volume, the present one treats the interface between nonlinear
control theory and mechanics. Second order control systems are obviously central in this regard, and
the intrinsic geometric approach we have presented builds naturally on earlier work of Roger Brock-
ett. We have shown that in using the language of affine connections, it is possible to state conditions
involving the vanishing of curvature-like quantities that must be satisfied in order for acceleration
controlled Lagrangian systems to be rewritten (more simply) as velocity controlled Lagrangian sys-
tems. These geometric conditions also bear on the simplicity of computing the averaged potential
and assessing the stability characteristics of such systems under the influence of high-frequency os-
cillatory inputs. It is of interest to note that the vanishing of the input connection occurs precisely
in the case that we have been able to prove Lyapunov stability of forced “linear Lagrangian” sys-
tems. Since our vanishing conditions are necessary for the elimination of certain Coriolis terms in
the unreduced Lagrangian, they may also bear on questions of dissipation induced instability which
have been discussed by Bloch et al. [1994].
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Figure 1: (a) Rotating planar pendulum joint; (b) Rotating universal pendulum joint. We consider
a simple rotating pendulum suspended by either type of joint as depicted. The pendulum consists
of a link of length £, which we assume to be massless and at the end of which are four equal masses
distributed as shown so that the moment of inertia of the pendulum is nonsingular.
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Figure 2: (a) Controlled planar body with a pendulum attachment; (b) Controlled planar body with
an eztending pendulum attachment. The length of the extensible pendulum is ax, where z is the

z—-coordinate of the hinge point connecting the two bodies.
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Open-loop Oscillatory Stabilization of an n-Pendulum

S. Weibel J. Baillieul*
Dept. of Elec/Comp Engineering Dept. of Aero/Mech Engineering
Northeastern University Boston University
Boston, MA 02115 Boston, MA 02215
Abstract

This report presents new results on the behavior of an n-link pendulum which is controlled by
means of an oscillatory input forcing one end link. Drawing on recent research on the oscillatory
control of second order nonlinear systems, we adopt the averaged potential as the primary tool
in our equilibrium and stability analysis. While such control of single-degree-of-freedom systems
has been studied in fair detail[15), researchers are only beginning to explore the issues which
arise in the control of multi-degree-of-freedom systems. Of specific interest is the behavior when
the system possesses bifurcations and more than one stable equilibrium. In this report, we
present a study of the bifurcations and stability of a periodically-forced cart and n-pendulum
on an inclined plane. Periodic open-loop forcing of the single degree-of-freedom pendulum has
previously been shown to be a robust and effective means of stabilizing the inverted equilibrium,
and this robustness carries over to the multi-degree-of-freedom case provided attention is paid to
matching the forcing amplitude to the characteristic length scales of the system. In addition, we
present numerical results on the basins of attraction of the vertically forced double pendulum.
We present an exact model for the n-degree-of-freedom system, nondimensionalize the model,
and compute the averaged potential. Equilibria and their stability characteristics are found
through a bifurcation analysis of the averaged potential. For a double pendulum system, we are
able to provide a detailed comparison of analytical, numerical, and experimental results—all of
which are found to be in close agreement.

1 Introduction

Recent research (e.g. [10] and [6]) has pointed to the geometric nature of stabilization effects pro-
duced by oscillatory forcing of controlled mechanical systems. These results togehter with the
nondimensionalized theory presented in [18] suggest that high-frequency oscillatory control designs
can be effectively applied to mechanical systems over a very wide range of characteristic length
scales. In particular, there is great appeal in applying what are essentially robust open-loop meth-
ods for the control of micromechanisms where they allow us to avoid the very challenging problem of
closing feedback loops using noisy and unreliable sensor technologies. While a great deal of previous
work on the oscillatory control of mechanical systems has been aimed at so-called superarticulated
mechanical systems comprised of multibody chains (e.g. [18],[17], and [15]), recent work suggests
interesting applications of the basic concepts to the control of micromechanical systems such as
bubble dyanamics ([9]) or the silicon cantilevered beam and plate structures arising in MEMS ap-
plications ([7]). A crucial result in applying these methods to systems at small characteristic length
scales is that stabilization effects are scale invariant. The present report is aimed at illustrating
some of the fundamental questions which are raised in studying this issue, and we have chosen to

*Support from the Army Research Office under the ODDR&E MURIS7 Program Grant No. DAAG55-97-1-0114
to the Center for Dynamics and Control of Smart Structures (through Harvard University) is gratefully acknowl-
edged. Partial support from the U.S. Office of Scientific Research through grant F49620-96-1-0059 is also gratefully
acknowledged.
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place the discussion in the context of the response of heavy chains to rapid oscillatory forcing. This
has the threefold advantage of pushing the theory further into the real of multi-degree-of-freedom
mechanical systems, giving the questions of length scale a very clear physical interpretation, and at
the same time making contact with a body of previously published work.

Our starting point is to consider controlled mechanical systems which can be described by the
Lagrangian

£(@,0:0) = 50T M@Q)Q +vAQ)TQ ~ Va(Qsv), M

where v € R is the control input, M(Q) € R®*" is a state-dependent inertia tensor, A(Q) € R"
is a Coriolis coupling vector, and V,(Q@;v) € R is known as the augmented potential. Such systems
typically arise from n + 1 degree-of-freedom systems where the velocity of one degree of freedom
is viewed as the control input v. Details of the model order reduction process leading to (1) may
be found in [4]. The noncanonical Hamiltonian #(Q, P) corresponding to (1) is found through the
Legendre transformation #(Q, P) = PTQ - L:

H(@, Pyv) = (P~ vAQ)TM(@)™ (P - vAQ) + Va(Qs0) @

where P = {P, P, .. .,Pn}T are canonical momenta defined by P = 6£/8Q. We refer to (2) as
“noncanonical” because for an arbitrary input v, energy is not necessarily conserved (i.e. H/0t # 0).
If we assume now that v is a periodic function of time (i.e. v(t + T) = v(t) for some T" > 0), in
principle H(Q, P;v) can be averaged over one period of v(t) to obtain the averaged Hamiltonian H,
which is written

Q. P) = 3 (P~ TA@)T M@ (P - TA@) + Va(@Q), ©
where U = % fOT u(t)dt, v2 =% foT v%(t)dt, and

Va(@ = 5 (¥ - 7) AQT M@ AR +Va(@) @

is known as the averaged potential. The resulting averaged Hamiltonian is a proper Hamiltonian (i.e.
OH /0t = 0), and the equilibria and stability of the associated dynamics may be studied in terms
of the critical points of V4(Q). The similarity of the dynamics associated with (3) to the dynamics
associated with (2) is largely dependent on the forcing amplitude and frequency. At the moment,
this method of averaging is a formal method which has been shown to give meaningful results for
many systems, and the development of a more rigorous theory of averaging for such systems is an
active research area.

The widely studied vertically-forced pendulum(8, 4, 18] possesses a Hamiltonian of the form (2),
and the stabilization of a more general pendulum system using the method of Hamiltonian averaging
has recently been presented in [18]. In this work, the system being considered is a pendulum, where
the forcing is directed along a line at some angle a measured with respect to the horizontal. The
dynamics of the pendulum are given by the second order o.d.e.

16 + mylo cos(f — o) + myglsind = 0, (5)

where v(t) = #(t) is the velocity which the pendulum hinge point is forced to follow. The parameters
are my =mass of the pendulum, I =the planar moment of inertia of the pendulum computed about
the hinge point, and £ = the distance from the hinge point to the center of mass of the pendulum.
The averaged potential for the mechanism is

m2e?
21

Va(0) = o2 cos®(6 — &) — mpgl cosb, (6)
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q(t) =P coswt

Figure 1: The rapidly forced cart and n-pendulum on an inclined plane.

where 02 = (1/T) foT v(t)? dt, with v(-) being a piecewise analytic periodic function of period T'.
Although the exact form of the periodic input is of little importance (as noted in [7]), to focus the
discussion, suppose v(t) = Bw sin wt, corresponding to having the pendulum hinge point execute the
motion qo(t) = —Bcoswt along the prescribed axis. In the nondimensional version of this problem
(as described in [18]), two dimensionless parameters play a role:

0= % and €= %,
in terms of which we write down a nondimensional averaged potential V4(g) as described in the
next section. In rescaling the noncanonical Hamiltonian and computing the averaged potential, it
is found that for high frequencies (small €), the averaged system tends to stabilize in the direction
of oscillation. Further analysis shows that the nonautonomous system executes periodic motions,
called hovering motions [16, 18, 15], about the averaged fixed point, where the period of motion is
the same as that of the forcing, and the amplitude is roughly proportional to the forcing amplitude
divided by the forcing frequency squared (= d¢, and hence the amplitude of the periodic motions
tends to zero as € — 0). Equilibria of the averaged system and periodic orbits of the nonautonomous
system are shown to arise as the result of bifurcations at critical values of the parameters § and .
Furthermore, it has been shown shown that there is a close correlation between the averaged phase
space and Poincaré map of the nonautonomous system.

In this report, we show that many of the qualitative features of the single-degree-of-freedom
(SDOF) system’s dynamics also appear in the dynamics of periodically forced n-link chains. Ques-
tions concerning charateristic length scales become more important and more subtle, however.
Specifically, the focus of this report is the bifurcation and stability theory of a periodically forced
cart and n-pendulum on an inclined plane, illustrated in Figure 1. Roughly speaking, the question
we study is how the various links in the chain align themselves when the cart executes high frequency
but small amplitude periodic motions. As with the SDOF pendulum, parts of this story have roots
dating back to the early part of this century[12]. Stabilization of the inverted n-pendulum has been
more recently considered by Acheson[l]. In this work, the Floquet-theoretic approach is applied to
a linear model of n-pendulum dynamics in a neighborhood of the fully inverted equilibrium. The
main result of this report is a bounding of the forcing amplitude at which the fully inverted equi-
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librium is stabilized given the minimum and maximum natural frequencies (Wmin and wWmee in [1],
resp.) and the forcing frequency (wp). Acheson remarks that a necessary condition for stabilization
is wg > w2,,,. Furhter results in this direction will be discussed below in Section 5.

An advantage of taking the averaging approach outlined in this introduction is that it provides
the means to find, determine the stability, and study bifurcations of all equilibria. While it is, in
principle, possible to generally follow the procedure used to study the averaged SDOF system as
outlined in [18], the n-DOF system is considerably more complex. Specifically, it possesses many
more symmetries arising from mass and length parameters, whose breakings have profound effects
on the equilibrium and bifurcation structure of the system. The phase space geometry of the SDOF
system lends itself well to a detailed study of the stability and basins of attraction of equilibria
of the averaged system dynamics. For many-link pendula, the picture is obscured by the large
number of dimensions of the system’s phase space. A more important problem, however, is that in
the n-DOF system the connection between the averaged system dynamics and the nonautonomous
(controlled) system dynamics depends crucially on the characteristic length scale of the smallest
system component. This problem is computationally tractable for the double pendulum, whose
dynamics we consider in Section 5. In the general case, it may be possible to use the averaged
Hamiltonian in estimating the size of the basins of attraction, and we comment on this possibility
in the conclusion.

2 The Rapidly Forced Cart and n-Pendulum on an Inclined
Plane

2.1 Averaging and Characteristic Length Scale in the SDOF Case

Before treating the general case, it is useful to describe the connection between characteristic length
scales and our theory of averaging in the case of a SDOF pendulum on a cart. The goal here is to
understand the stability characteristics in terms of the critical points of V4(-) given in (6). These
points are found as solutions to the critical point equation

2Igsinf — mylo?sin2(d — ) =0,

and when a = § (the case in which the suspension point is periodically forced along the vertical
axis), the inverted configuration § = 7 is always a critical point. The averaging theory of [4, 5] states
that if a critical point is a local minimum of V4(-), then for oscillatory forcing of sufficiently high
frequency, the pendulum will execute stable motions in a neighborhood of the point. In the present
case, the second derivative V() is positive precisely when myfo? > gI. Making the apporoxima-
tion I =~ my£?, and taking the forcing function v(t) = fw sin(wt), our theory predicts that there will
be some value w;s ~ /2g¢/B such that the pendulum will execute stable motions very close to the
inverted configuration, provided w > w,. This recovers the classical result on this problem. (C.f. [2],
p. 152.)

Since the critical frequency parameter value of the averaged potential is we, = v/2¢€/8, it is of
interest to know how closely w,, approximates ws. Since wer ~ O(:’Z%), a naive conjecture would
be that the stabilization effects of oscillatory forcing are observed at lower frequencies when the
pendulum length parameter £ becomes small. Unfortunately, this conjecture is false, and we have
shown in [7] that ws ~ wer only when 8 ~ £. This means that to apply averaged potential theory at
small characteristic length scales, we need to have 8 ~ ¢, and hence w; ~ wer ~ 1/2g/¢.

For the n—pendulum systems we treat next, there are two characteristic length scales which are
important—the total chain length, £, and the length of the shortest link, £;. Of the two, £; is the
more important for linking the critical point analysis of the averaged potential to the stability of
the forced system. Hence in the rescaling discussed below, this length scale will play an important
role. A more detailed discussion will be presented in Section 5.
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2.2 System Model

Consider the system illustrated in Figure 1, where each m; is a point mass located at the end of the
i-th massless link, ¢; is the length of the ¢-th link, 6; is the angular deviation of the ¢-th link with
- the hanging vertical position, go is the position of the cart along the incline of angle e, and g is the
acceleration due to gravity. A kinematic analysis of this system, similar to that presented in [14],
results in the derivation of a Lagrangian of the form (1), which is associated with the noncanonical
Hamiltonian

H(0, P;do) = %(P ~ GoAB)TM(8) (P ~ qoA(6)) + Va(85 o), (7)

where

Mij(g) = my ¢; Zj COS(gi —_ 9_1)

k—max(z,])

Ai(G;a) = ( )Z cos(f; — a)
: (zmk) B0 +V,(0), ®)
k=

1

va(a; lJo) =

V() = il( )gé 1—cos€)] 9)
i= k=i

We immediately note that H is dependent on the variable go only through the cart velocity go.
Suppose that the cart position go is given explicitly as a piecewise analytic periodic function of
time—for instance, go(t) = B coswt.

2.3 Rescaling and Averaging

Let m = 3.7, m;, and let £, be the smallest link length. Then the length of all other links can be
written £; = \ils, where 1 < X; < k, where k is an O(1) constant. We nondimensionalize (7) by the
change of variables ¢; = 6;, P = mwlzp, H = mw?2H, and a change of time scales 7 = wt. Let
BQ(7) = qo(t). After making these substitutions and 51mp11fy1ng, we obtain

H(q,p;7) = %(p—Jv(T)A(Q))M(q)"l(p—5v(T)A(q))+Va(q;‘r) (10)
where
Mij(g) = (_ » ) Aid;j cos(gi — g5)
Ai(gia) = ( )/\ cos(gi — @)
Valgr) = %(kz_juk) o) + V()
Volg) = é [ kiﬂk) A1 _COSQi)] , (11)

and where § = /4;, € = g/Esw v(r) = £Q(7), and p; = m;/m. The averaged Hamiltonian H
is defined as H(q,p) = # fo (g, p; T)dr, where T is the fundamental period of v(+). The averaged
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Hamiltonian has the general form

H(q,p) = 55" M(@)p+ Va(g:8,9 (12)

where the averaged potential V4(g; 9, €) is

Vatai6,9 = S A@TME@ ™ AG) + eVy(0) (13)

Remark 1 The parameters § and € have very clear physical interpretations. ¢ represents the ratio
of the forcing magnitude 3 to the chain length ¢, and € can be interpreted as the ratio of the system
“natural frequency” w, = \/m squared to the forcing frequency w squared. In assuming small
amplitude, high-frequency forcing, we are making the assumption that 8 < £ and w, < w. Hence,
0<dland0<e<x1l.

Remark 2 An advantage of using the nondimensional model is that it facilitates the mathmematical
discussion concerning equilibria and stability in several physically interesting limits. Of particular
interest is the limit in which the forcing frequency becomes infinite while the forcing amplitude
remains finite but non-zero. In the nondimensional model, this limit is taken by fixing § > 0
while letting € — 0. Another physical interpretation for this limit is that the usual potential forces
(i.e. gravity) in V, become negligible when compared to those potential forces arising from the
periodic forcing. While the theory unfolds most easily in terms of the €,6 parameters, it will be
useful for physical interpretation to retain also a dimensional version of the averaged potential. The
dimensional version of (13) is

2
Val(g;0) = Z-AB)MO) T A®B) +V, (6), (14)
where
2 1 T 2 d
ot = /0 v(T)* dr,
with T being the fundamental period of v(-).

Remark 3 For the sake of explicitness, we may carry out the nondimensionalization of the chain
model assuming sinusoidal forcing go () = 8 coswt, but the assumption of this particular form of the
periodic input is not necessary.

3 Behavior of the Averaged System in the Limit ¢ = 0

In experiments, it is usually the case that the mechanism producing the periodic motion of the pen-
dulum base produces motion of fixed amplitude and variable frequency. This constraint results in
fixing the value of 8 (or, equivalently, ¢), while allowing us to vary w (or €). Studies of stabilization
for SDOF systems have shown that stabilization is a high-frequency phenomenon. Therefore, the
approach we take is to study the behavior in the limit as e — 0 and 4 is held constant.

We begin by deriving the equilibrium equations, which we write

Mg)™'p = 0
2
22 (a0m@ @) + T2 < (1)

Stabilization in the high-frequency w — cc limit is easily studied by simply letting ¢ = 0. By
definition, M~! is nonsingular, from which the first equation of (15) implies that p = 0 at an
equilibrium. We state the results of our analysis of the second equation in the following theorems.
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Theorem 1 Equilibria associated with (10) in the € = 0 limit include ¢; = a + k7 /2, where k € Z.

Proof: Setting € = 0 in (15) leaves us with n equilibrium equations defined by

- (A7 M(0) ™ A@) =0 (16)

This system of equations may be written in symbolic form as

04T oM ()~
(225 100 + 400" 22— ) 4t0) =

-1
where g%gﬂ is a diagonal 2-tensor (matrix) and a—"{()(%)—— is a 3-tensor. Among solutions to this

system are those for which one of the following conditions hold:
Alg) = 0 (17)
GIA@T - r0M(9)~*
—M A
M@ + AW e = 0, (18)

-1
since nonzero components of Q%qﬂ of the form sin{g; — &), while nonzero components of 8—“%%1— are
of the form sin(g; — ¢;). This proves the theorem. O

Theorem 2 Equilibria q. of (15) with coordinate entries ¢; = o + M, 1<i<nandk; €Z
are stable rest points of the averaged system.

Proof: We prove the theorem by showing the Hessian matrix H(g) = %ﬂ is positive-definite
for each q. of the prescribed form. Positive-definiteness implies that ¢, is a local minimum of the
averaged potential V4(q), and therefore g, is a stable rest point of the averaged Hamiltonian system.
Computing partial derivatives, we obtain

R s LT

dq? Jq 0q?
T -1
+ (2250 pg(g) 4 207 ) 250, (19)

At g, recall that A(gs) = 0, and therefore (19) simplifies to

aA(q)T 194(9)
9q

H(gs) = 2

M(q)~

=9,
For any vector z € R", we have
)

T <3A(q) Mg )_13A(q))

.7 -1
3 z=y M(q) 'y >0,

a=qs

9q
H(q,) is also positive definite. O

where we have substituted y = (@-@)l z. Because M(q)~! is positive definite by definition,
9=qs

Theorem 3 FEguilibria q; = o + k;w experience a bifurcation at € = 0. Further, there exists e; < 1
such that for 0 < € < €, these equilibria are unstable.
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Stable Unstable
Equilibria Equilibria

Figure 2: Selected equilibria for the averaged cart and double pendulum in the limit as € — 0. As

stated in Theorem 1, equilibria aligned with the direction of motion are stable, and those aligned
normal to the direction of motion are unstable.

Proof: At ¢; = a + n;m, both %@ =0 and %%)—_i =0, in which case H(q) simplifies to

8% A(q _ 82M(g)?!
1) = (2229 y(g) 4 a4 E2HOT) 4g) (20)
dq Oq
We can eliminate either 32’:(") or 82M(")_1 by computing another partial derivative of (18): solving
for Mﬁ— and setting —‘ﬂq— =0 and aM(") = 0, we obtain
8% A(q) 1 ?M(q)~!
2 = AT =5 M (g).
p = AW 5 M)

We substitute this last expression into (20) and find

() = (-0 5L 4 4@ ) a@ =0,

Remark 4 Theorem 1 indicates that in the e — 0 limit, the system stabilizes in configurations where
the links are aligned with the cart motion. There are unstable equilibria prescribed by configurations
where the links are aligned with the direction normal to the cart motion. This is illustrated for the
cart and double pendulum in Figure 2. We consider the equilibria and bifurcations of the cart and
double pendulum in Section 5.

4 Bifurcations, Stability, and Behavior of the Vertically Forced

n-Pendulum as n — oo
In this section, we consider stabilization as we pass to the limit in which we let n — co while holding
the pendulum length and mass constant. The main result to emerge from this section is that as we

add degrees of freedom, the oscillation frequency at which stabilization occurs becomes large, and
ultimately tends to infinity.
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4.1 Bifurcations of the Vertically Forced n-Pendulum

For the vertically forced pendulum systems (o = %), the link configurations in which all g; are either
0 or 7 are stationary points (equilibria) of the forced Hamiltonian system (7) for all values of the
input go(-). (Cf. Theorem 1 and Theorem 2.) Although these points are always equilibria, their
stability characteristics change as we vary the frequency of the oscillatory forcing. This is reflected

in bifurcations of the averaged potential described as follows.

Theorem 4 In the coefficient system (11) associated with the nondimensionalized Hamiltonian,
suppose o = 5. Let {gs} denote the set of critical points of the averaged potential Va(q) defined
in (18) in which each g; is either 0 or m, 1 < i < n. For all g. € {qs} except the trivial hanging
equilibrium qe = (0,...,0)T, there exzists a critical value of € denoted €. > 0 such that at € = e, ge

experiences a bifurcation such that for 0 < € < €.r, ge is a strict local minimum of Va.

Remark 5 Recall that € ~ ;}g, where w is the frequency of the oscillatory forcing. Theorem 4 states
that for each equilibrium in which all links are aligned vertically, there is a critical frequency we,
above which the equilibrium is a relative minimum of the averaged potential.

Proof of Thm. 4: From Theorem 2, equilibria belonging to the set {gs} are stable for the
averaged system when € = 0, so what remains to be done to prove the theorem is to show that
for each g, € {gs} there exists an €., > 0 at which a bifurcation occurs, changing the stability
type of the critical point. Recall that the stability of a critical point of (13) may be determined
from the concavity of the averaged potential V4(g), which is inferred from the Hessian matrix H(q).
Furthermore, the equilibrium experiences a bifurcation if for some set of parameters the averaged
potential becomes loses rank, i.e. if the Hessian matrix has one or more zero eigenvalues. For
ge € {gs}, H(g) can be written

2 T 2
() = (5 250 M 250 - 20

Recall from the proof of Theorem 2 that the matrix B—’t,(g)—T-M (q)‘l@—gggl is always positive-definite,
and furthermore is symmetric (because M (q)~! is symmetric and positive definite). By definition of
Ve(2), %Yqig(i) is a diagonal matrix which is easily partitioned into a positive-definite part we shall
denote V(g)*, and a negative-definite part denoted —V~(g) where V(q)~ is itself a positive-definite
matrix. Note that for the trivial hanging equilibrium that V=(¢) = {0}"*", in which case the
Hessian is always positive-definite and the equilibrium is always stable. For all other equilibria, the
Hessian matrix can be written as the difference of positive-definite matrices as follows:

2 T
() = [ 52510 252 4 evio)]

9=

—-€[V(g)7] lq=qe .

=4

The theorem will be proved by establishing the following lemma.

Lemma 1 Let P; and Py be n X n positive-definite symmetric matrices. Then there exists a real
number €, > 0 such that P, — ePy is positive definite for all € < ¢, and Py — €P3 is not positive
definite for € 2> €.

Proof of lemma: P; — nP, is symmetric for all values of the parameter 1, and because P; is
positive definite, for any vector z # 0 of the appropriate dimension, TPz > 0. Given such an z,
it is clear that there is some number 7; > 0 such that 27 Pz — nzTPyz < 0 for all > n;. Indeed,
given z, we can chose 7, = n;(z) = TPz / 2T P2x. The €. that we seek is the inf of 5, (z) over all
z such that ||z|| = 1. o
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Making the appropriate substitutions for P; and Pj in the previous lemma and letting €., be the
smallest €., there exists for each ¢, € {gs} an €., > 0 at which H(g.) is no longer positive-definite.

Given that for g. € {gs}, the terms MagﬁM (q)‘la—’;gﬂ, V(q)*, and V(q)~ are constant with re-

spect to ¢ and that the term €V(g)™ grows linearly with €, we can conclude that H(g.) is never
positive definite for € > €... Hence, each ¢, is rendered unstable by a bifurcation at some € = €., > 0
as € increases in value. m]

Remark 6 Note that the type of bifurcation experienced by equilibria in the set {gs} must necessar-
ily be pitchfork, in that exactly two equilibria must bifurcate symmetrically about elements of {g;}.
Note, however, that this does not imply that other types of bifurcations cannot occur elsewhere.
In fact, in our study of the double pendulum in the next section, we shall see that saddle-node
bifurcations do occur away from elements of {g;}.

4.2 Stabilization of the Fully Inverted Equilibrium as n —+ oo

Theorem 5 Consider the fully inverted equilibrium ge = (m,...,m)T of the n-link, vertically (a =
w/2) forced chain. Assume that all masses and link lengths are equal, and that the total mass and
length of the chain is held constant; i.e. p; = % and A; = 1 for 1 < i < n. Let Hy(g.) denote
the Hessian matriz associated with this equilibrium, and let €. be the smallest value of € for which
det H,(ge) = 0. Then €., is strictly decreasing as n — oo, and the critical frequency w., at which
the equilibrium is stabilized in the averaged system dynamics tends to infinity (00) as n — infty.

Proof: Our strategy of proof is to convert the determinant calculation to an eigenvalue problem,
where the eigenvalues we compute correspond to critical values of € and the smallest of these values
is €.r. Because of the special structure of H,(ge), we will be able to show that €., for the n-DOF
system is strictly smaller than for the (n — 1)-DOF system for all n. We begin by explicitly writing
out the determinant as

det Hn(ge) = det (% 3Aa(;1)T M(g)™? Bg;q) + ea2g;§Q)) =0. (21)

We now proceed to write each of the terms in the preceding equations in terms of n. First, we note
that ngAqQ is a diagonal matrix of the form

— (T ) M 0 e 0
dA(q) _ 0 —(Ciap) X 0
aq . . ",
0 0 —fin
-n 0 0
1| 0 (-1 0 1_1,
T o : “n
0 0 -1

Similarly, 19%—/52(—@ can be reduced to a diagonal matrix of the form

-n 0 e 0
62Vg(q) 3 l 0 _(n_l) -0 3 }_V
9 - . . . . -
Oq n : n
0 0 -1
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For M(q)~!, we first consider a reduction of M(q): specifically, we have

n n-1 n-2 ... 1
; n—-1 n—-1 n-2 1 .
M@==| n—2 n—-2 n-2 1 | =M.
@== : | | ~M (22)
1 1 1 e 1
The inverse of M given in (22) can be expressed as
1 -1 © 0O 0 ©0
-1 2 -1 0 0 O
0o -1 2 0 0 0
M"l = . :
0 0 © 2 -1 0
0O 0 O -1 2 -1
0 0 O 0o -1 2
for all n. Then M(g)~! = nM™1, and then (21) can be written
1/(8% , po 1 1—
det Hy(g.) = det ~ —2-A M™A+eV | =det ;Hn(qe) =0, (23)
where
n(‘;n—z) —%n(u-—l) 0 [ 0
—an -1 2(n-1)(ﬁ;-(n—x)—¢) -i,}(n—x)(n-z) o 0
_ 0 —%Q—(n—l)(n—2) 2(n—2)(§:—(n-2)-—£) 4 0
Hyn(ge) = . . . .
é) (; (; 4(52.-:) —;f;
0 0 0 il 2 (si;- - .)

H.,.(g.) is a Jacobi matrix. The theorem can be proven by converting (23) to an eigenvalue problem
and making use of the following lemma for Jacobi matrices, which is given in [11].

Lemma 2 Let L, be an n X n Jacobi matriz of the form

bl c 0 e e 0
as b2 C2 0 e 0
0 as b3 C3 L 0
L, = . .
0 e “en Qn—1 bn—-l Cn—1
0 0 an bn

where a;,b;,¢; € R for all i and let L. denote the principal v x v submatriz Ly[1,...,7|1,...,7]. If
aici—1 > 0,1 €2,...,n, then

1. all characteristic roots of L, are real and simple, and

2. between any two characteristic roots of Ly, lies ezactly one characteristic root of L_3.

Proof: This lemma appears in [11], and its proof may be found in [3].
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We now premultiply Hy,(g.) by a positive-determinant, n x n diagonal matrix C and postmultiply
by a positive-determinant, n x n diagonal matrix Q, where

L g 0 0 10 0 0
0 -1 0 - 0 0 2 0 0
c=|0 0 5 - 0], Q=]00 3 0 (24)
0 0 0 1 00 0 1
to obtain . —
det [CHA(g.)Q] = det Hn(ge) =0, (25)
where . )
éz-n—e -4 (n-1) 0 0 0
%n ‘s;(n——l)—e —%(n—2) 0 0
0 -Cm-1) Zm-2) - 0 0
Hx(ge) = ! 2 . .
0 0 0 F-e -2
2 2
0 0 0 R

Equation (25) is now in the form of the eigenvalue problem
det Ho(ge) = det(Ly — £1) = 0,

where L, is a positive-definite Jacobi matrix of the form considered in Lemma 2. Note that because
L,, is positive-definite, min(e) > 0. We now note that we can obtain the analogous matrix L,_; for
an n — 1-DOF system by blocking off the first row and column of L,. Denote the eigenvalues of
L,-1 as {e,—1} and the eigenvalues of L, as {€,}. By Lemma 2, the eigenvalues of L, lie between
those of L,,. Hence, we have

0 < min({€,}) < min({en-1})

for all n. Therefore, as n — oo, min({e,}) = ¢, ¢ > 0. To complete the proof of the theorem, we
note that the critical frequency wy, is related to e, by

g
€ = T
Since the length of the shortest link £; ~ 1/n, the result of the theorem follows. O

Remark 7 Theorem 5 implies the critical frequency we, at which each element of {g,} is rendered
stable increases as additional links are added to the pendulum (while holding the total mass and
length of the pendulum constant). Consequently, in the limit as the number of links n — oo,
wer — oo for each element of {g;}. This conclusion suggests that it is therefore impossible to
stabilize any equilibria in the set {gs} in the continuum limit; i.e. it is impossible to stabilize an
inverted (planar) string.

Theorem 5 can be easily verified using widely available computer algebra software. In this study,
we compute the eigenvalues of the n x n matrix L, for 1 <n < 50 and § = 0.2. The results of this
calculation are shown in Figure 3, where we see in the left frame that min(¢,) tends toward zero as
n becomes large. Consequently, €., — 0 quickly, as shown in the right frame.
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Figure 3: det(L,) vs. n (left) and €, vs. n for the fully inverted equilibrium of the vertically forced
chain. As predicted by Theorem 5, both det(L,) and €., decrease as n increases.

4.3 Stabilization of the Completely Folded Equilibrium as n — oo

By employing essentially the same procedure used to prove Theorem 5, we can prove that in the limit
as n — 00, € tends to zero for any regular pattern of link configurations. In the next section, we
present numerics which suggest that the fully folded configuration is one of the first configurations
to stabilize as € — 0, so it is reasonable to expect that values of €. for those configurations also
tend to zero.

Remark 8 In [18] it was seen in the SDOF system that for w < wcr, the averaged phase portrait
generally reflected the Poincaré map of the nonautonomous system, specifically in terms of peri-
odic orbits associated with averaged fixed points and the stability. Periodic orbits associated with
averaged fixed points manifest themselves as 1:1 resonances in the Poincaré map. What the aver-
aged phase portrait never captures are subharmonic resonant responses in the Poincaré map. For
w > Wer, it was observed in [18] that these subharmonic resonances do not play a significant role in
the nonautonomous dynamics. This has also been established rigorously in two limiting cases of the
parameters § and €. For w < w,,, however, subharmonic responses do play a significant role in the
nonautonomous dynamics, along with homoclinic tangling of phase space separatrices and the asso-
ciated bands of stochasticity. It is therefore likely that subharmonic resonances also play a significant
role in the dynamics of the periodically forced n-pendulum for w < w¢, and in the “large n” limit
dominate the dynamics for all w. For physical systems, damping and other dissipative forces (e.g.
aerodynamic drag) tend to mitigate the chaotic behaviors exhibited by purely conservative systems,
and one would expect physical systems to exhibit fairly regular periodic response to forcing.

5 Numerical Studies

5.1 Bifurcations of the Cart and Double Pendulum

The results from Section 2 capture the equilibrium behaviors of the averaged cart and n-pendulum
in the case of infinite forcing frequency, which we express in our nondimensional model by allowing
€ — 0. As ¢ is perturbed off zero, the equilibria found in Theorem 1 move as the contribution
of gravity to potential energy becomes significant, and for distinct critical values of € the system
experiences bifurcations. In this section, we focus on obtaining numerical results for the vertically
forced double pendulum and comment on bifurcations for the symmetric (1 = g2 = A1 = Ay = 1/2)
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Figure 4: Bifurcation diagram for the averaged cart and double pendulum, where py = p2 = Ay =
X2 = 1/2, a = 7/2, and § = 0.2. In the plots, we see that the inverted and folded equilibria are
rendered stable in transcritical pitchfork bifurcations. These bifurcations give rise to the unstable
equilibria which are normal to the direction of motion.

system.

The necessary equilibrium equations and Hessian matrix are easily derived from the general form
of the averaged potential given in (13). The reader is referred to [13] for full details of this calcula-
tion. We now turn our attention to calculations of equilibria and stability for the vertically forced,
symmetric (g3 = g2 = A1 = A2 = 1/2) double pendulum, where we fix § = 0.2. The algorithm
which we use is a two-dimensional bisection algorithm which utilizes the fact that the equilibrium
equations for this system define two-dimensional hypersurfaces on the torus. Equilibria are then
intersections of the intersections of each surface with zero.

For the vertically forced (a = 7/2) case, we obtain the bifurcation diagram shown in Figure 4. In
this figure, we see that for large values of € the system possesses unstable equilibria in configurations
aligned with the vertical. As e — 0, new equilibria are created in a series of transcritical pitchfork
bifurcations off the vertically aligned equilibria. These bifurcations have the effect of changing the
stability of the inverted and folded equilibria from unstable to stable, and in the process create the
unstable equilibria which in the € — 0 limit correspond to the configurations normal to the direction
of motion.

5.2 Stabilization Sequence for Vertically Forced Chains

As the frequency parameter € decreases, the averaged potential for the n-link chain undegoes a rich
set of bifurcations, and many equilibria are stabilized by the oscillatory forcing. Some indication of
this richness is provided in Figure 5 where for two, three, and four link chains we give the stabilization
sequence of equilibria in which successive links have the displayed “up-down” patterns. Here the

bifurcation parameter is the r.m.s. value of the forcing o = \/5—2— . When o = 0, only the hanging
equilibrium is stable, and this is the only local minimum of the averaged potential. As o increases
(corresponding to an increase in amplitude or frequency of the forcing), however, the form of the
averaged potential changes and other critical points become local minima. There are a number of
interesting features in these patterns, including the fact that the case in which all links are inverted
is the last to become a relative minimum of the averaged potential (as the forcing frequency is
increased) for chains with any number of links.
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Figure 5: Bifurcation Sequence of Heavy Chains

Another observation worth noting is how the bifurcations of critical points of the averaged po-
tential depend on other physical parameters. Figure 6 illustrates how the number of stable equilibria
depends jointly on characteristic link lengths together with r.m.s. value o. In this figure, the various
curves define boundaries in the (¢,02%) parameter space at which bifurcations occur. Only the first
quadrant of the (¢, 0?)-plane is physically menaingful, and this is partitioned into four sectors. In
each sector, it is precisely those configurations depicted by the cartoons whose stabilization (under
the oscillatory forcing) is predicted by the analysis of the averaged potential. Note that it is only
in the topmost sector that stability of all vertically aligned configurations is predicted. Here what
we see is that the links with shorter lengths tend to become stabilized in the vertically upright
configuration before the links with longer lengths. Clearly, if we consider chains with nonuniform
links, the bifurcation patterns become very rich as the number of links increases.

These figures raise the question of how precisely the averaged potential analysis predicts the
stabilization of an n-pendulum under oscillatory forcing. To some extent this remains an open
question. Consider the dimensional version of the averaged potential

Vala) = SA@ M@ A0)T +V(a).

As v(-) ranges over a set of continuous periodic functions of period 1 with

1
m%=/mwm=m,
0

let vy (t) = nu(nt). Then the r.m.s. value of v, is

T

ol = /" vy ()2 dt = 877,
0

and for a fixed value of 8, (as v(-) ranges over a family of periodic functions of Ly-norm 8, we ask
how much the stabilizing effects of oscillatory forcing by v,(-) can vary.

This question has been answered explicitly for a one-paerameter family of piecewise continuous
inputs in the case of a single DOF pendulum in [7]. It is useful to summarize this result before
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Figure 6: Bifurcation locus of 2-link nonuniform chains. The various curves define boundaries in the
(¢,0?)-parameter space at which bifurcations occur.

addressing the n-DOF case. Take ¢ to be a rectangular wave:

b(t) = R f0<t<w
YW= —k ifw<t<l

whose definition we extend to all ¢ € {0,00) by time-1 periodicity: v(¢ + 1) = ©(t). The condition
that v is also periodic is satisfied provided that k = wh/(1 — w). The dynamics of the system and
the averaged potential are given by (5) and (6) respectively with o = 7. To study the dependency
on frequency of the forcing, let v,(t) = nu(nt). The corresponding value of o2 is

1 T n2h2w2
2 _ 1 2 gs
Oy = T/o vg(t)* dt B
The averaged potential analysis of the stability of the “inverted” equilibrium proceeds as follows.
For all 77, § = m satisfies the critical point equation V', (8) = 0, and since V)j(7) = m£2n?h?w?/(121)—
mpgl, ™ is a strict local minimum of V4 whenever n > /12Ig/(mylhw). Consider the linearized
dynamics of (5) in a neighborhood of (8, 6) = (=, 0):

16 — mylif — mygld = 0. (26)

(See 5] or [15] for information on linearized models of Lagrangian control systems.) We shall apply
a Floquet type analysis to the dynamics of (26) in terms of the time-T' mapping. (T = 1/7 is the
period of the forcing.) Specifically, letting (z,yr) = (6(k/n),0(k/n)), this map is given explicitly

by
( Tk+1 ) — eAngBn ( Tk ) 27)
Yk+4+1 Yk

4 _l—w( 0 1)
AN =

where

b4




and
w

B =Y < 0 1 )
T\ Bg+nth) 0 )

~ Normalizing the rectangular wave so that hw = 1, the second derivative of the averaged potential
becomes positive when n > 7. = 1/12Ig/(mpf). The averaging theory of mechanical systems
(5]) asserts that there is some value 7, such that for all 7 > 7, the linearized model (26) will be
Lyapunov stable. Within the class of rectangular wave forms we have specified, ., will in fact vary
even though the r.m.s. value o on which the averaged potential depends remains constant. More
specifically, when hw = 1, we shall hold af, = n/12 constant. Then, letting w range between 0 and
1, the shape of the forcing function 9(-) changes from a large-amplitude, short-duration up-pulse
followed by a relatively shallow negative value (when w ~ 0) to a relatively long shallow positive
value followed by a large-amplitude down-pulse (when w ~ 1). This difference in wave-form shape
influences the range of values of n for which (26) is Lyapunov stable. The analysis is carried out
in terms of the time-T map, (27), and in particular, we conclude that (26) is stable in the sense of
Lyapunov precisely when the eigenvalues of e7¢5 lie on the unit circle. (For more details on this
Floquet type of stability analysis, see [5].)

For a single DOF pendulum, it is not difficult to find a fairly explicit relationship between 7, and
pulse-width parameter w. In [7] we make the somewhat surprising observation that 7, does not vary
a great deal as a function of w, although a waveform characterized by a prominent, large-amplitude
downward pulse, with relatively slow return upwards (i.e. in terms of the parameter w we have
w ~ 1) will stabilize the system at a lower frequency than waveforms for which w is not close to 1.
The main result of [7] is that in comparing the bifurcation value 7., with the critical stabilization
frequency 7 we have 75 ~ 1., provided 8 ~ £.

For a more detailed picture, consider a pendulum with parameter values my = 1/2, I = mpl?,
and take g = 10. To examine the case in which g is scaled in direct proportion to the charateristic
link length £, we take 8 = £. Then 5., = 1/120/¢, and in Figure 7 we plot = 1;/7.- as a function
of the pulse-width parameter w. We again see that the stabilizing effect of the oscillatory forcing
is relatively insensitive to variation in the waveform. The more remarkable feature of Figure 7,
however, is that the relationship between 7s and 7., is totally independent of the characteristic
length scale £.

The stabilization effects of oscillatory forcing of n~-DOF pendula depend more subtly on charac-
teristic length scales, and it can be shown that the forcing amplitude should scaled with the shortest
link length (corresponding to the fastest time constant in the system) in order to ensure that the
key qualitative features of the system response are predicted by analyzing the averaged potential.
To understand this remark in a bit more detail, we consider a simple two-link system. If we vary the
relative link lengths in the chain (as depicted by the cartoon systems in Figure 6), the relationship
between the bifurcation values 7., of the averaged potential and the actual critical stabilization
frequencies can change a great deal. This is illustrated in Figure 8 where we plot n = 7, /Mer as a
function of the pulse-width parameter w for the configuration (61,68;) = (7,0) in the case of link
lengths £, = 0.9 and £, = 1. Here it is no longer the case that the graph remains unchanged as £,
varies, and in fact we have found that the slope of n(w) becomes steeper as £; is decreased rela-
tive to £, = 1. For this simple family of rectangular wave-form inputs, the stabilizing effect of the
periodic forcing is increasingly sensitive to the pulse-width parameter as the relative link lengths
become more disproportionate. This suggests there may be a governing robustness principle wherein
increasing the degree of nonuniformity in the pendulum system will make it more difficult to apply
averaged potential theory to determine stability conditions for the forced system.

5.3 Simple Experiments in Open-Loop Control

Experiments in open-loop oscillatory control for pendulum systems are not terribly difficult to con-
struct and yield compelling demonstrations of the effects of high-frequency forcing in the stabilization
of mechanical systems. The apparatus with which we performed our experiments was constructed
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Figure 7: For the single DOF (simple) inverted pendulum, the normalized stabilization frequency
N = ns/ner is plotted (solid line) as a function of pulsewidth parameter w. The graph remains
unchanged for all values of pendulum length £.

{1 11 Double pendulum,1;=0.9,12=1
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Figure 8: For the 2-DOF pendulum, this graph depicts the normalized stabilization frequency
1 = 15 /nNer for the configuration (61,62) = (w,0). 7 is plotted (solid line) as a function of pulsewidth
parameter w. The link-length parameters are £ = 0.9 and £ = 1. This graph changes with the
average slope of the solid line becoming more steep as ¢; is reduced relative to the length £ = 1.
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Figure 9: View of the mechanism which rectifies rotary motion to periodic vertical motion.

from readily available plexiglass and plywood stock, with a common toy d.c. motor and strips of
aluminum. The mechanism which rectifies the rotary motion of the motor to periodic linear motion
is illustrated in Figure 9. Note that the second (outer) link of the pendulum used in the experiment
was slightly shorter than the first (inner) link, hence the pendulum is slightly different from the
symmetric pendulum considered in many of the previous calculations.

In the experiments conducted, motor (and consequently oscillation frequency) control was open-
loop. Hence we only make qualitative observations on the stabilization of equilibria. Using this
apparatus, we were able to stabilize all equilibria predicted by our analysis of the averaged potential.
These equilibria are depicted in Figure 10. In conducting these experiments, it was observed that
the stabilization sequence agreed with the numerical calculations of the last section. Specifically, the
hanging folded equilibrium stabilized at roughly the same motor voltage (~oscillation frequency)
as the inverted folded equilibrium, and the fully inverted equilibrium stabilized at a much higher
motor voltage. Furthermore, the hanging folded equilibrium was observed to be more robust to
disturbances than the inverted folded equilibrium, and much more robust than the fully inverted
equilibrium.

5.4 Basins of Attraction for the Cart and Double Pendulum

To this point, we have focused on the stabilization of equilibria and ifurcations of equilibria as the
result of variations in primarily the forcing frequency. What arises as an important issue for the
n-link chain that is not so important for the single link chain, and is important for the type of open-
loop control we propose in general, is the long term dynamics of n-DOF systems with arbitrary
initial conditions. The issue of long-term dependence on initial conditions, or basins of attraction,
is approachable for SDOF systems because of the existence of powerful analytical tools such as Mel-
nikov’s method and invariant manifold theory, and essentially because it is possible to compute and
visualize phase space separatrices. This analysis has been performed for the SDOF rapidly forced
pendulum[18] and for an entire class of SDOF velocity controlled systems[15]. At present, the theory
for higher dimensional systems is highly specialized and much less developed.

Our long term goals, for which we provide preliminary results here, revolve around three ques-
tions:

1. To what extent do basins of attraction of the averaged system describe those of the nonau-
tonomous system? .
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Figure 10: Stabilization of the hanging folded equilibrium(left), the inverted folded equilib-
rium(center), and the fully inverted equilibrium(right). In conducting these experiments, it was
observed that the stabilization sequence agrees with that predicted in the previous section.
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Figure 11: Basins of attraction for the averaged cart and double pendulum.

2. How can forcing or other physical parameters be varied to favor one or more basins of attrac-
tion?

3. How can the averaged potential be used directly to estimate either the basins of attraction or
the probability that an arbitrary initial condition will be attracted to a specific equilibrium?

In addition, a detailed understanding of the basins of attraction possibly will enable to quantify
an equilibrium’s robustness to disturbances; i.e. quantify how much of a disturbance will force the
system into the basin attraction of another equilibrium.

The dimension of the phase space for even n = 2 makes numerical calculations difficult unless
we restrict our attention to some two dimensional subset of initial conditions. One reasonable set
of initial conditions are those where the system starts at rest. To develop intuition for the first
question, we have simulated the double pendulum system with small damping over a 256 x 256
grid of initial conditions which cover the configuration manifold 72 for a variety of inclinations c,
forcing parameters é and ¢, and inertial parameters p; and A;. The results for one set of simula-
tions are shown in Figures 11 and 12, where as indicated in the plot, & = 0. In the figures, we
see a rough correspondence between the basins of attraction of the averaged and nonautonomous
systems, which is typical of these plots for other parameter combinations. Noticeable in the basins
of attraction of the nonautonomous systems are the irregular basin boundaries and remnants of the
regions of stochasticity which are known to form around basins of regular motion in periodically
forced Hamiltonian systems. The basin boundaries represent intersections of unstable manifolds of
the various equilibria with the initial condition space, and the irregularities suggest that at the value
of damping used in the simulation, significant tangling of stable and unstable manifolds persists.
This was observed in the case of the SDOF system in [18], where theorems were presented which
establish bounds on the tangling of phase space separatrices. Also note that the folded equilibria
dominate the initial condition space, as suggested by the results of the previous section.

49



q2

q1=-1.1585
=] q2=-1.0500

Parameters v Area =0.0000
lll =0.500 ql =-1.1524
o q2 =-1.0297

pn2 =0.500 ./é Area=03784
A1=0.500 ql = 14749
0 —¥=o q2=-15438

A2=0.500 Area=0,1116

o =0.000

ql =12159
§=0.200 [ 42 =1.0702

£=0.010 Area =0.4100
¢=0.010 gl =-14115
omN— 42 = 1.5840

Area =0.0999
41 =-1.1500
u q2=-1.0265

./?(— Area =0.0000
q1=12134
] 42 =1.0648

—)‘i.mea:().mm

Figure 12: Basins of attraction for the nonautonomous cart and double pendulum.

6 Conclusion

In this report, we have considered the stabilization of a cart and n-pendulum system on an inclined
plane by high-frequency periodic forcing. The viewpoint we have taken is that we wish to understand
the details of behavior induced by a very simple type of control action applied to a reasonably
complex mechanical system. Specifically, we have found that as the forcing frequency becomes large,
the n-pendulum system aligns itself with the cart motion. These results were obtained by deriving
a dimensionless noncanonical Hamiltonian, and then averaging the noncanonical Hamiltonian to
obtain an average Hamiltonian. The results followed from a critical point analysis of the averaged
potential. In addition, we saw that the results obtained through the use of the averaged potential
may be connected with results obtained through Floquet theory. Finally, we confirmed the results
of Section 2 for the vertically forced cart and double through a numerical study of the system’s
bifurcations and stability. A striking feature distinguishing the n-DOF systems from the more
widely studied SDOF case is the sensitivity of the results to nonuniformity in the characteristic
length scales of the system components.
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